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Vladimir Andreevich Steklov (1864 - 1926)

Steklov was not only an outstanding mathematician, who made many
important contributions to Applied Mathematics, but also had an unusually
bright personality.
The Mathematical Institute of the Russian Academy of Sciences in Moscow
bears his name.
On his life and work, see Kuznetsov, Kulczycki, Kwasnicki, Nazarov, Poborchi,
Polterovich & Siudeja. “The Legacy of Vladimir Andreevich Steklov” (Notices
of the AMS, 2014).

• Boundary spectral parameters were introduced by Steklov, in 1902.
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The classical Steklov eigenproblem

The classical Steklov eigenproblem reads
∆u = 0, in Ω,

∂u

∂ν
= λu, on Γ := ∂Ω,

(S)

where ν denotes the unit outer normal to Γ, and the unknown u is a (real-, or
complex-valued) function called Steklov eigenfunction, while the unknown
number λ is called Steklov eigenvalue.

Ω is a sufficiently regular1 bounded domain2 in Rn, and the (scalar) harmonic
function u is required to belong to the standard Sobolev space H1(Ω).

(S) can be considered as the eigenvalue problem for the celebrated
Dirichlet-to-Neumann map:

1Γ is at least Lipschitz continuous.
2Domain = Connected open set.
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Dirichlet-to-Neumann map

Given the solution u ∈ H1(Ω) of the Dirichlet problem{
∆u = 0, in Ω,
u = f , on Γ,

(D)

with datum3 f ∈ H1/2(Γ), one can consider the normal derivative ∂u
∂ν

of u as
an element of H−1/2(Γ).

This allows to define the map D from H1/2(Γ) to H−1/2(Γ) by setting

Df =
∂u

∂ν
.

D is called the Dirichlet-to-Neumann map, and its eigenpairs (f , λ) correspond
to the eigenpairs (u, λ) of problem (S), f being the trace of u on Γ.

3For a “nice” Ω, there exists a unique linear continuous map (the trace of u on ∂Ω) from
H1(Ω) into L2(∂Ω), such that for any u ∈ H1(Ω) ∩ C(Ω) we have γ0(u) = Tr(u) := u|∂Ω.
Then H1/2(Ω) := γ0(H1(Ω)), and H−1/2(Ω) is its dual.
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Applications

There is a broad spectrum of applications of the Steklov eigenvalue problem in
various areas, including

• Calderón’s problem (the inverse problem of recovering the electric
conductivity of an electric body from the knowledge of the
voltage-to-current map).

• Spectral geometry.

• Shape optimisation.

• General 2nd order elliptic operators.

• Differential forms on a compact Riemannian manifold with smooth
boundary.

• The biharmonic equation (4th order) - Elasticity.

• Travelling waves for nonlinear pdes (e.g., the defocusing NLS).

• Maximising the information transmission rate in the cerebral cortex.

Nevertheless, time allows only a couple of words about:
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Applications - Linear water waves

Consider water waves in a canal, open sea, or other unbounded domain.
Linear water waves are described by a mixed BVP for the Laplace equation
with the Steklov spectral boundary condition on the horizontal water surface.
Wave propagation occurs provided the Steklov spectral parameter λ belongs
to the continuous spectrum σc of the problem.
In an infinite basin Ω, this spectrum is not empty and usually includes the
positive real axis of C. The inclusion λ ∈ σc frustrates the Fredholmness of
the operator in H2(Ω), and one needs to reduce the data space and to impose
radiation conditions (which distinguish between the waves incoming from, or
outgoing to, infinity).
Nazarov & Taskinen (2010) have shown that σc may be nonempty even in a
bounded 3-dim pond.
This is due to either a submerged body touching the water surface, or a sharp
edge of the pond.

Kuznetsov, Maz’ya & Vainberg, Linear Water Waves - A Mathematical
Approach, 2004.
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Applications - The sloshing problem

The sloshing problem consists in the study of small oscillations of a liquid in a
finite basin represented by a bounded domain Ω in R3, with ∂Ω = Γ1 ∪ Γ2,
where Γ1 corresponds to the horizontal (free) surface of the liquid at rest, and
Γ2 to the bottom of the basin.
The Steklov boundary condition ∂u

∂ν
= λu is imposed only on Γ1, while the

Neumann condition ∂u
∂ν

is imposed on Γ2.
Canavati & Minzoni (1979) studied existence and regularity for such mixed
BVPs. They proved stronger regularity results (than the general ones of
Miranda (1955)), under very special assumptions on the boundary and on the
data. They reformulated the Steklov problem in terms of a nonlocal operator,
and established the existence of a purely point spectrum for the inverse
operator. These problems are very similar to regular Sturm-Liouville problems.
Nevertheless, there are situations of interest (e.g., waves on sloping beaches),
that produce singular Steklov problems (the boundary can have cones, or be
infinite). Special cases of this situation were studied by Whitham & Minzoni
(1977), in connection with wave propagation.



On
Steklov
eigen

problems

I. Stratis

9

Steklov spectrum and linear coffee waves

Mayer & Krechetnikov (2012): dynamics of liquid sloshing

The velocity potential Φ : Ω× R→ R satisfies
∆Φ(x , t) = 0, inside the mug,
∂2Φ(x , t)

∂t2
+ g

∂Φ(x , t)

∂ν
= 0, on the free surface,

∂Φ(x , t)

∂ν
= 0, on the sides and the bottom.

Separation of variables leads to the following problem for the x-component (f )
of Φ 

∆f = 0, inside the mug,
∂f

∂ν
=
λ

g
f , on the free surface,

∂f

∂ν
= 0, on the bottom.
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Time-harmonic Maxwell’s equations

When one considers time-harmonic fields (U(x) e−iωt , where ω > 0), in a
linear homogeneous isotropic electromagnetic medium (i.e., with constant
physical parameters) in R3, the time-harmonic Maxwell’s equations

curlE− iωµH = 0, curlH + iωεE = 0,

where ω is the angular frequency, ε ∈ R and µ ∈ R are the electric
permittivity, and the magnetic permeability of the medium, and E ,H are the
(space-dependent parts of) the electric and the magnetic field, respectively,
are satisfied.

Since both ε and µ are assumed to be constant, we have that E and H are
automatically divergence-free:

div E = divH = 0.

Table: Electromagnetic Metamaterials

ε > 0 & µ > 0 : dielectrics ε > 0 & µ < 0 : gyrotropic
ε < 0 & µ > 0 : plasmas ε < 0 & µ < 0 : left-handed
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The interior Calderón operator

Let Ω be a bounded domain in R3 with smooth boundary Γ.
We consider the following classical BVP that involves the perfect conductor
condition on Γ{

curlE− iωµH = 0 , curlH + iωεE = 0, in Ω,
ν × E = m, on Γ,

((E,H)-PEC)

where ν denotes the unit outer normal to Γ.

The interior Calderón operator is defined as the mapping of the tangential
component of the electric field to the tangential component of the magnetic
field on Γ, i.e., m 7→ ν ×H.

Calderón operators are also called Poincaré-Steklov, or impedance, or
admittance, or capacity operators.
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The interior Calderón operator

By eliminating H we obtain{
curl curlE− k2E = 0, in Ω,
ν × E = m, on Γ,

(E-PEC)

where k2 := ω2εµ.

Instead of the standard interior Calderón operator for (E-PEC) (see, e.g.,
Cessenat (1996), Kristensson, S, Wellander & Yannacopoulos (2020)), we
consider its variant defined by m 7→ (ν ×H)× ν, i.e.,

ν × E 7→ − i
ωµ

(ν × curlE)× ν .
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The Steklov eigenproblem in Electromagnetics

The natural analogue in Electromagnetics (so in R3) of the classical Steklov
problem (S), can be defined as the eigenvalue problem for the rescaled (of the
defined in the previous slide) interior Calderón operator

ν × E 7→ −(ν × curlE)× ν.

Therefore, one looks for values λ such that (ν × curlE)× ν = −λν × E, or,
equivalently (by taking another cross product by ν)

ν × curlE = λET,

where E satisfies curl curlE− k2E = 0, and ET := (ν × E)× ν is the
tangential component4 of E.

The Steklov eigenvalue problem for Maxwell’s equations is{
curl curlE− k2E = 0, in Ω,
ν × curlE = λET, on Γ.

(SM)

4For U : Ω→ R3, we have U|Γ = (ν · U|Γ) ν + (ν × U|Γ)× ν.
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(SM) was first introduced, for k > 0, by Camanõ, Lackner & Monk (2017),
where it was pointed out that the spectrum is not discrete. In particular, for
the case of the unit ball in R3, it turns out that the eigenvalues consist of two
infinite sequences, one of which is divergent and the other is converging to
zero. To overcome this issue, they considered a modified problem having
discrete spectrum and then used it for the study of an inverse scattering
problem.

On the other hand, Lamberti & S (2020) have analysed (SM), for k2 ∈ R,
only for tangential vector fields E, in which case (SM) can be written as{

curl curlE− k2E = 0, in Ω,
ν × curlE = λE, on Γ.

(SM-tan)

The boundary condition automatically implies that E is tangential, hence the
null sequence of eigenvalues disappears and the spectrum turns out to be
discrete.

There are not so many publications devoted to Steklov problems for Maxwell’s
equations: apart the two papers mentioned above, we know of Cakoni, Cogar
& Monk (2021), Cogar (2020), (2021), (2022), Cogar, Colton & Monk
(2019), Cogar & Monk (2020), and Halla (2019), (2021).
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The main problem

Ω denotes a bounded domain in R3 with a C 1,1 boundary5 Γ := ∂Ω.
The energy space is XT(Ω) =

{
U ∈ (H1(Ω))3 : U · ν = 0 on Γ

}
.

To guarantee the coercivity of the quadratic form associated with the
corresponding differential operator, we employ an idea of Costabel & Dauge
(1999), by introducing a penalty term θ grad div u in the equation, where θ
can be any positive number.
Namely, we consider the eigenvalue problem6

curl curlE − k2E − θ grad div E = 0, in Ω,
ν × curlE = λE , on Γ,
E · ν = 0, on Γ,

(SM-θ)

where E is the unknown vector field.

• We do not assume that k2 := ω2εµ ∈ R is necessarily positive.
Hence, all combinations of signs are allowed for ε and µ (electromagnetic
metamaterials, recall slide 10).

5A C1,1 boundary is the graph of an everywhere differentiable function, having a locally
Lipschitz continuous gradient.

6Although the second boundary condition is in fact embodied in the first one, we still
include it in (SM-θ) since it appears in the definition of the energy space.
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Weak formulation

(SM-θ) has to be interpreted in the weak sense as: find E ∈ XT(Ω) such that∫
Ω

curlE · curlϕ dx − k2
∫

Ω

E ·ϕ dx + θ

∫
Ω

div E divϕ dx = −λ
∫

Γ

E ·ϕ dσ ,

(wSM-θ)
for all ϕ ∈ XT(Ω).

We need to assume that k2 does not coincide with any eigenvalue An of
curl curlE − θ grad div E = AE in Ω,
ν × E = 0 on Γ,
E · ν = 0 on Γ.

Clearly the two boundary conditions above are equivalent to the Dirichlet
boundary condition E = 0 on Γ. So, equivalently, we consider the problem{

curl curlE − θ grad div E = AE in Ω,
E = 0 on Γ.

(Dir)

(Dir) has a discrete spectrum which consists of a sequence {An}n∈N of
positive eigenvalues of finite multiplicity.
Hence the above assumption becomes k2 6= An, for all n ∈ N.
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The eigenvalues

The first eigeinvalue of (Dir) is

A1 = min
ϕ∈(H1

0 (Ω))3 ϕ6=0

∫
Ω
| curlϕ|2 dx + θ

∫
Ω
| divϕ|2 dx∫

Ω
|ϕ|2 dx

> 0.

We consider the case
k2 < A1.

The key result is

Theorem

Let k2 < A1 and θ > 0. The eigenvalues of (SM-θ) are real, have finite
multiplicity and can be represented by a sequence {λn}n∈N, divergent to −∞.
Moreover, we have the min-max representation:

λn = − min
V⊂XT(Ω)
dimV=n

max
ϕ∈V\(H1

0 (Ω))3

∫
Ω

(
| curlϕ|2 − k2|ϕ|2 + θ| divϕ|2

)
dx∫

Γ
|ϕ|2 dx

.

(MinMax)
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The eigenvalues

By a technical procedure we introduce a compact selfadjoint operator T from
XT(Ω) to itself; hence its spectrum consists of zero and a decreasing divergent
sequence of positive eigenvalues βj , defined by βj = (−λj + η)−1.

Then the characterisation in (MinMax) follows by the classical Min-Max
Principle applied to T .

XT(Ω) can be decomposed as an orthogonal sum

XT(Ω) = KerT ⊕ (KerT )⊥ = (H1
0 (Ω))3 ⊕H(Ω),

where

H(Ω) := (KerT )⊥ =

{
E ∈ XT(Ω) :

∫
Ω

curlE · curlϕ dx

−k2
∫

Ω

E ·ϕ dx + θ

∫
Ω

div E divϕ dx = 0, ∀ϕ ∈ (H1
0 (Ω))3

}
.

(?)
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Note that E ∈ H(Ω) if and only if E is a weak solution in (H1(Ω))3 of{
curl curlE − k2E − θ grad div E = 0, in Ω,
ν · E = 0, on Γ.

(‡)

Solutions to (‡) play the same role as that played by the usual scalar harmonic
functions for the classical Steklov problem.
Further, the eigenfunctions, associated with the eigenvalues βn, define a
complete orthonormal system of H(Ω).

The general case
An < k2 < An+1,

is more demanding; for the proof, see Lamberti & S (2020).
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When is 0 an eigenvalue of (wSM-θ)?

Let Σ = {λn : n ∈ N} (the set of eigenvalues of (wSM-θ).
Consider two auxiliary problems; the first is the classical Neumann eigenvalue
problem for the Laplacian −∆φ = λφ, in Ω,

∂φ

∂ν
= 0, on Γ,

which admits a divergent sequence λNn , n ∈ N, of non-negative eigenvalues of
finite multiplicity, with λN1 = 0.
The second is the eigenproblem

curl curlψ = λψ, in Ω,
divψ = 0 in Ω,
ν × curlψ = 0, on Γ,
ψ · ν = 0, on Γ,

which admits a divergent sequence λMn , n ∈ N, of non-negative eigenvalues of
finite multiplicity.
Theorem

Let k 6= 0 and θ > 0. Then

0 ∈ Σ⇐⇒ k2 ∈ {θλNn : n ∈ N} ∪ {λMn : n ∈ N}
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Trace problems and Steklov expansions

We denote by EΩ
n , n ∈ N, an orthonormal sequence of eigenvectors

(normalised with respect to Q) associated with the eigenvalues λn of (SM-θ).

Let πT denote the tangential components trace operator7 from XT(Ω) to
TL2(Γ), where

TL2(Γ) = {u ∈ (L2(Γ))3 : ν · u = 0 on Γ}.

By setting
E Γ

n :=
√
|λn − η| πT

(
EΩ

n

)
,

it is proved that E Γ
n, n ∈ N, is an orthonormal basis of TL2(Γ).

These bases can be used to represent the solutions of{
curl curlU − k2U − θ grad divU = 0, in Ω,
ν × curlU = f , on Γ,

(†)

where f ∈ TL2(Γ).

7πT : U 7→ (ν × U|Γ)× ν =: UT.
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Trace problems and Steklov expansions

Let f be represented as

f =
∞∑
n=1

cnE Γ
n,

with {cn}n∈N ∈ `2.
It is proved in Lamberti & S (2020), that if 0 /∈ Σ then the solution U of (†)
can be expanded as

U =
∞∑
n=1

(√
|λn − η|
λn

cn

)
EΩ

n .

Finally, the trace space of XT(Ω) can be represented as

πT(XT(Ω)) = πT(H(Ω)) =

{
∞∑
j=1

cjE Γ
j :

∞∑
j=1

|λj − η||cj |2 <∞

}
.



On
Steklov
eigen

problems

I. Stratis

23

Scalar Spherical Harmonics

The scalar spherical harmonics are the angular part of the solution to Laplace’s
equation in spherical coordinates where azimuthal symmetry is not present:

Yσm`(ϑ, ϕ) =

√
εm
2π

√
(2`+ 1)(`−m)!

2(`+ m)!
Pm
` (cosϑ) Φσ(ϕ),

where

- σ ∈ {e, o},
- `,m ∈ N0 : m ≤ `,
- ϑ ∈ [0, π],

- ϕ ∈ [0, 2π),

- εm := 2− δm0 (“Neumann factor”),

- P̀ (x) := 1
2``!

d`

dx`
(x2 − 1)` (Legendre polynomial),

- Pm
` (x) := (1− x2)m/2 dm

dxm
P̀ (x) (Legendre function),

- Φe(ϕ) := cos(mϕ),

- Φo(ϕ) := sin(mϕ).

The spherical harmonics define a complete basis over the unit sphere in R3.
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Vector Spherical Harmonics

We employ the multi-index notation8 Yn := Yσm`.
Let J be the set of triple indices σm`, where σ ∈ {e, o} and `,m ∈ N0 : m ≤ `
and B be the unit ball in R3.
For n ∈ J, and all ξ ∈ ∂B, the vector spherical harmonics are defined as

A1n(ξ) =
1√

`(`+ 1)
gradξYn(ξ)× ξ,

A2n(ξ) =
1√

`(`+ 1)
gradξYn(ξ),

A3n(ξ) = Yn(ξ) ξ,

along with A1σ00 = A2σ00 = 0.

• {Aτn : τ ∈ {1, 2, 3}, n ∈ J} is a complete orthonormal system in (L2(∂B))3.

For x ∈ B \ {0}, we set
A1n(x) =

|x |√
`(` + 1)

gradxYn

(
x
|x |

)
×

x
|x |

,

A2n(x) =
|x |√

`(` + 1)
gradxYn

(
x
|x |

)
,

A3n(x) = Yn

(
x
|x |

)
x
|x |

.

8See, e.g., Kristensson (2016).
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The Steklov eigenproblem in the case of the unit ball

Let jq(z), z ∈ C, be the Bessel function9 of order q ∈ Z.

For n ∈ J, consider the functions

E 1
n (r) := j`(kr),

F 2
n (r) := −

j ′`

(
k√
θ

)
k√
θ

j`(k)
√
`(`+ 1)

(
j`(kr)

r
+ j ′`(kr)k

)
+
√
`(`+ 1)

j`
(

k√
θ
r
)

r
,

and

F 3
n (r) := −

j ′`

(
k√
θ

)
k√
θ

j`(k)

j`(kr)

r
+ j ′`

(
k√
θ
r

)
k√
θ
.

By tedious calculations, see Ferraresso, Lamberti & S (2022), the following
theorem can be proved.

9 jq(z) the is the regular at z = 0 solution of the Bessel ordinary differential equation
z2y ′′q (z) + z y ′q(z) +

(
z2 − q2)y(z) = 0, and is defined by the (convergent everywhere in C)

power series
∑∞
κ=0

(−1)κ

κ!(q+κ)!

(
z
2
)q+2κ.
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The Steklov eigenproblem in the case of the unit ball

Theorem

• Let k 6= 0. Then, in the unit ball S2 of R3, the eigenvalues and
eigenfunctions of the Steklov problem (SM-θ) are given, for all ` ∈ N and all
n ∈ J, by the two families

λ
(1)
n = −

j ′`

(
k√
θ

)
j`(k) k3

√
θ

j`
(

k√
θ

)
j`(k) `(`+ 1)− j ′`

(
k√
θ

)
j`(k) k√

θ
− j ′`

(
k√
θ

)
j ′`(k) k2

√
θ

,

Fn = F 2
n A2n + F 3

n A3n,

(1)


λ

(2)
n = −

(
1 +

j ′`(k)

j`(k)
k

)
,

E n = E 1
n A1n.

(2)

• Both λ(1)
n and λ(2)

n diverge to −∞.
• It holds that divFn 6= 0 and divE n = 0.

We conclude with the following
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Remark

The denominators in (1) and (2) vanish for certain values of k 6= 0.

The corresponding k2’s are proved to coincide with the eigenvalues An of the
Dirichlet problem (Dir) (slide 16), namely{

curl curlE − θ grad div E = AE , in Ω,
E = 0, on Γ.

Hence, by our standing assumption

An < k2 < An+1,

both denominators are always different from 0.
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The case k = 0

If we let k → 0 in (1), (2), we obtain

lim
k→0

λ(1)
n = − ` (2`+ 3) θ

` (θ + 1) + 1
,

lim
k→0

λ(2)
n = −(`+ 1),

which (when θ = 1) agree with the values computed by Raulot & Savo
(2014), in their study of the spectrum of the Dirichlet-to-Neumann operator
acting on forms of a Euclidean domain.

The above case corresponds to the limit in which the electric permittivity ε of
a given material is 0 at a specific frequency, so the time-harmonic Maxwell’s
equations become

curlE− iωµENZ H = 0 , curlH = 0,

µENZ being the magnetic permeability of the zero-permittivity material.
Wave propagation in this material can thus happen only with infinitely large
phase velocity.
Such metamaterials are called ENZ (Epsilon-Near-Zero), and have very
interesting applications, see, e.g., the book by Li, Zhou, He & Li (2022).
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