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Canonical Example: inhomogeneous kinetic Fokker-Planck

Let f: (0,t] x RY x RY —» R, d € N, solution to
fr +v-Vf —VV(x)-V,f =V, (V,f+ vf)
with V, and V, gradients w.r.t. x and v, respectively, subject to
(0, v, x) = fo(v, x), (v,x) € RY x RY,

for some potential V : R? — R with [e™Vdx = 1.
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Let f: (0,t] x RY x RY —» R, d € N, solution to
fr +v-Vf —VV(x)-V,f =V, (V,f+ vf)
with V, and V, gradients w.r.t. x and v, respectively, subject to
(0, v, x) = fo(v, x), (v,x) € RY x RY,
for some potential V : R? — R with [e™Vdx = 1.

The standard substitution f = ue™ 5, with E(v,x) := V(x) + 3|v|?, gives
ur+v-Vyu—VV - Vyu=A,u—v-Vyu,

subject to the initial condition with ug := fyef.
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Key property

The solution u decays to the equilibrium distribution exponentially in time.

Define equilibrium measure
dp = e EV¥) dv dx,
and respective function spaces Ly(u), H* (1), ...

Energy argument: test with ue™ and integrate w.r.t. v, x to get
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Decay to equilibrium?

1d

EEHUH%Q(H) + ||Vvu||f2(m =0,

If spectral gap/Poincaré-type inequality of the form
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Decay to equilibrium?

1d

EEHUH%Q(M) + ||Vvu||%2(ﬂ) =0,

If spectral gap/Poincaré-type inequality of the form

2
lu— [ udulf gy < 21Vl ()
holds (see, e.g., Bakry & Emery ('86)), then Gronwall's Lemma gives
u(tr) — 5”%2(”) < e " |up — 5\@(@
i.e., exponential decay to the equilibrium state & as tf — oc.

Key challenge

(*) does not hold due to x dependence of u: non-trivial kernel...
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General setting
PDE problem, together with suitable conditions:
ur + Lu="f

Energy method:

1d, B
5 lul® + (Cu ) = (f,0)

If no Poincaré inequality of the form (£u, u) 2 ||ul|? holds, then we have
exponential dependence on Ty in the stability estimate...

Consider now a typical numerical method:
Oup + Lhup = fy
Let e = u — up, the error; then
e+ Lre=0u—u+ (Lph—L)u+f—1

If no Poincaré inequality of the form (£,u, u) 2 ||ul|? holds.... ~ error bound
constants grow to infinity as t — oo...
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ur+ Lu=0 where 2::ZXJ-*XJ-+XO
j=1
with X; 1st order diff. operators and X skew-symmetric, i.e., (Xpv, v) = 0.

Let also Y; := [Xo, Xj| the commutator vector fields w.r.t Xj.

Hypocoercivity occurs when the fields Xo, Xj, Yj, [Xo, Yj], ... have full rank along
with some commutation properties. Villani ('09)

For expositional simplicity let j =1, i.e., £ = X{X; + Xo. J

The idea from villani ('09) is to alter the energy inner product from (Lu, v) to
(Bu,v)) == (Lu, v) + a( X1 .Lu, X1v) 4+ 26(X1 Lu, Y1v) +v(Y1Lu, Y1v)
for some well chosen «, 3,y > 0, which can give potentially rise to spectral gap:
(Lu, w) Z [1Xul? + [ Yau® > co|ull®.

therefore, decay as t — 00:  [le™ |31 /Kere a1 Kere < €O
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Hypocoercivity

In the inhomogeneous kinetic Fokker-Planck example
Lu=v-Vyu—VV -Vyu—A,u+v-Vyu,
we have
Xo=v-V4u=VV .-V, +v .V, Xj:=0, j=1,...,d

and, therefore,
Y = [Xo, Xj] = Oy + 0y,

giving the full rank of 2d.

Remark:

Hypocoercivity typically requires higher differentiation properties of the underlying
PDE solution.
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Variational interpretation

A key observation is a variational interpretation of hypocoercivity structures
presented in G. (21). Following this interpretation, we work as follows:

We first test against we™E for w € H'(u), to deduce
(U, W)LQ(/L) +(v-Vou—-VV-V,u, W)Lz(u) + (Vyu, VVW)LQ(“) =0

Next, we differentiate with respect to V,:

Vour +Veu+ (v -V )Vou— (VV -V, ) Vou =V, Ayu+Vou+ (v-V,)V,u =0,

and with respect to Vi:

Vit + (v - Vi )Vaeu — H(V)Vyu — (VV -V, )Veu — VA u + (v - V,)Veu = 0,

with (V') denoting the Hessian matrix of V with respect to the variables x.
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Variational interpretation

Combining the last two identities into vector form, we have

Vv,xut + (V ' VX)VV,XU + ( _,HI( V) (I) )vv,xu - (VV : Vv)vv,xu
d
- Z vv,xuvjvj + (V . vv)vv7xu = 0,
j=1

for | = idgxq € R?*9. Testing now against AV, ,we £, where A € R29*29 with

[ al Bl
A= (5 )
for a, 5,7 > 0 to be determined below, along with some algebra gives
(vv.xuh AVVJW)LQ(/L) + ((V . vx)vv,xu - (vv : vv)vv.,xua Avv.x W)Lz(u,)
d
+ (( Bl — ”y,H(V) Bl ) Vi x U, VV,XW)LQ(/L) + Z(VV,XU\/jﬂAvV.XW\/j)Lz(/I,) =0,

j=1



Variational interpretation

Adding the two red identities yields: for almost every t € (0, t¢], find u € H?(u),
such that
(ut, W)Lz(u) + (Vuxte, AVVAXW)Lz(H) +a(u, w) =0,

where

a(u,w) = (v Veu = VV - Vyu, W),
+ ((V . VX)VWXU - (VV : vv)vv,xU7 AVV,XW)LQ(;L)

1+a)l ol
+(< ( 51 ) 3 >VV’XU7VV,XW)L2(IL)

d
3 (Funetiys AVob )i

j=1
7[3(7‘[( V)Vvu7 VVW)Lz(;t) — ’)’(H(V)V\,U, VXW)Lz(M)'

The sign of the last two terms is unclear: H(V) is not definite...

10



Hypocoercivity

Lemma ( viltani (‘09) )

Let g € H'(p) and energy E(v,x) = V(x) + 1|v|?, with V € C*(R?) satisfying
[H(V)lFrob < Co(1+ [V V),

pointwise for all x € R?. Then, for C; := 16C§(1 +/2dG)?, we have

IHV)ellE g < G (gl + V8 1E )
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Hypocoercivity

Lemma ( viltani (‘09) )

Let g € H'(p) and energy E(v,x) = V(x) + 1|v|?, with V € C*(R?) satisfying
[H(V)lFrob < Co(1+ [V V),

pointwise for all x € R?. Then, for C; := 16C§(1 +/2dG)?, we have

IHV)ellE g < G (gl + V8 1E )

Lemma (Hypocoercivity)

For any v € H3(u), there exist a, 3,7y > 0 with ary — 32 > 0, so that

a(v,v) > che (I VIIZ, 00y +B1VVIIZ, )
+ChC.,QaHvVvaVH%Q(M)+ChC,3W||VXVVTVH%Z(N)?

for positive constants chcj, i = 1,2,3, depending only on C;.

11
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‘Numerical’ hypocoercivity

Aim

Construct a general numerical framework satisfying similar properties.

Key hurdle: Galerkin approximation spaces are typically not smooth enough to
apply hypocoercivity results directly...

To the best of our knowledge, no result in this direction.

Results for simple low order finite difference methods Poretta, Zuazua ('17), Dujardin,
Hérau, Lafitte ('20); See also Foster, Lohéac, & Tran ('17) for a computational study.

Idea:

Employ discontinuous Galerkin (dG) inspired numerical flux functions for higher
derivatives to retain the subtle algebraic structure.

@ treat 4th order term a la Baker ('77), Engel et al. ('02), Brenner & Sung ('05), Feng &
Karakashian ('05,'07)...
@ conservative fluxes for odd order terms; Reed & Hill ('71), Yan & Shu ('02), Ayuso, Carillo

& Shu ('12),....
12



A hypocoercivity-preserving Galerkin method

Semidiscrete method (fully discrete analysed): seek U € Vj, s.t Vt € (0, t]
(U, W) 1,0y + (Vo xUs, AV W) () + an(U, W) + sp(U, W) = £(W),
for all W € V},, where
an(U,W) = (v-V,U—-VV -V, U W),
+((v- VVuxU = (VV - V)V, U, AV, W) 1,0

d
+ (va.,x U,V x W)Lz(/l) + Z(v\?,x UVJ’ ‘Av\fx W‘G)Lz(llr)'

j=1

with

am (o) mmmoen = (C5SR )

13



A hypocoercivity-preserving Galerkin method

and s : Vj, x V,, — R a stabilisation term, defined as

sh(U, W) := /r <vv il (a[[VvU]] AV W} + s[v. U] - { Vi W})

2
V- Ny

2

(BI[VX U] - {V. W} + [V U] - {Vi W})) dv

+ /r (HWHVXUH VW] + Al '2n”| [v,u]- [[VVW]]) dv

d
B / ({9 U3 ALV W, + (V] W, JAV, U,
j=1""

— o[V UL,CIV. W]]Vj) dv
with V := (VVT, —vT)T, for some x, A > 0 and C the stabilisation matrix with:

Ve = (diag(val, A1) A

( consistency stability symmetrisation terms, respectively )

14



A hypocoercivity-preserving Galerkin method

To gain coercivity, thus, it remains to tame the Hessian H( V).
Lemma (Dong & G. (in prep.))

Let g € Lo(p) N H(, T) and energy E(v,x) = V(x) + 3|v[?, with V € C*(R9)
with |H(V)|fob < Co(1 + |V V), for Co > 0. Then, for G; = G(Cp), we have

IH(V)ellZ, i < Culllgl,q + IVelt) +1 D ,,TVV -, |g]* dv.
TeT VY
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A hypocoercivity-preserving Galerkin method

To gain coercivity, thus, it remains to tame the Hessian H( V).

Lemma (Dong & G. (in prep.))

Let g € Lo(p) N H(, T) and energy E(v,x) = V(x) + 3|v[?, with V € C*(R9)
with |H(V)|eop < Co(1 + |V V), for Co > 0. Then, for C; = C1((), we have

el < Gl + IVselfgo) +1 S [ 9V onlaf? v
TeT VY

by selecting k sufficiently large, we can tame the last term, to arrive at:

15




Hypocoercivity of the Galerkin bilinear form
Lemma
Select the function o : T — R to be given by
le = Coo~Ep2lel max {1 ..l TI™ el 717},
for each element facee COT NAT', T, T' € T, for C, > 0 constant large

enough. Then, there exist o, 3,7y > 0 with ay — 2 > 0 s.t., for k, A > 0 large
enough, we have

an(W, W) + sp(W, W) > Chc(HVvWHiQ(H) + 3HVXWHE(,¢))
+ Chc,204||v\fvaW||iz(u) + Chc,WHVthVTW”%Q(M)

d
1 2
+2§/ra|fc[[vv,anvj| dv,

for che,i > 0, i = 1,2,3 independent of T and /C = (diag(y/al, \ﬁl))il.A.

16




Space discretisation

mass conservation of semidiscrete scheme
If finite element space V}, contains constants, we have

/Ud,uz/uodu:ﬁ, t €0, tr].
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Space discretisation

mass conservation of semidiscrete scheme

If finite element space V}, contains constants, we have

/Ud,u:/uodu:ﬁ, t €0, tr].

Theorem (Decay via hypocoercivity)

There is a k > 0, independent of h, p and U, such that, we have the bound

| U(tr) — E||f2(#)+||\/¢7lVV7XU(tf)||f2(#) <e "(|Uo - U||i2(#)+|\\/ZVV,XUOH%Z(#))

4

17



Space-time discretisation

We can use, e.g., hp-version dG-timestepping:

for each time interval I, := (t,—1,t,], n=2,..., N;, the solution U|, € VP(I,;T)
is given by:

/ (U, V) + (Y Us, AV, V) + a(U, V) + sp(U, V)) dt
In

+ (U(th-1), V7 1) + (Ve xU(tn—1), AV, £ V.1 )
= (Unila Vntl) + (vv,xU;_p-Avv,x Vntl)

for all V € VP(I,; T), with U,_; := U(¢t,_;) and Uy = wp.

18



Space-time discretisation

We can use, e.g., hp-version dG-timestepping:

for each time interval I, := (t,—1,t,], n=2,..., N;, the solution U|, € VP(I,;T)
is given by:

/ (U, V) + (Y Us, AV, V) + a(U, V) + sp(U, V)) dt
In

+ (U(th-1), V7 1) + (Ve xU(tn—1), AV, £ V.1 )
= (Unila Vntl) + (vv,xU;_y-Avv,x Vntl)

for all V € VP(I,; T), with U,_; := U(¢t,_;) and Uy = wp.

hp-version a priori error analysis for the space-time method follows under a
number of technical assumptions.

18



Convergence rate verification

up — Uxx + xu, = f for t € (0, 1], with smooth known solution

: Energy norm error under h-refinement
10 ‘ ‘

10+ :

_.
on
:

[1Iu-Ull|

—_

On
o
T

| |"8-Hypo-FEM P2 slope 0.96611
—8-Hypo-FEM P3 slope 2.0525
-8-Hypo-FEM P4 slope 2.9873
-4 I s
10
10° 10! 10° 10°
d Of1/3

—_
S,
o
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Discussion

@ The spatial bilinear form scales like a 4th order operator if A independent of
the meshsize h;
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Discussion

@ The spatial bilinear form scales like a 4th order operator if A independent of
the meshsize h;

@ making A appropriately dependent on h introduces a “CFL"-type condition
for the decay-to-equilibrium result. At the same time, it reduces the scaling
of the finite element matrix back to “O(h~2)".

@ Regularity /hypoellpticity of the dual of the spatial operator is unclear
currently. No Aubin-Nitsche tricks as yet.

@ The methodology is extremely general, allowing for construction of finite
element methods for different hypocoercive PDEs of second order.
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Conclusions

o A Galerkin framework for degenerate PDEs with special structure via
hypocoercivity — important/relevant particular cases!

@ hypocoercivity reinstates positivity to specially structured problems, in cases
where the use of normal equations fails.

@ Potentially allows porting of known theoretical and practical tools from
elliptic and parabolic Galerkin methods to this class of degenerate PDEs.

—k
D E. H. Georgoulis
Hypocoercivity-compatible finite element methods for the long-time
computation of Kolmogorov's equation
SIAM Journal on Numerical Analysis 59(1) pp.173-194 (2021)

[3 Z. Dong & E. H. Georgoulis
Hypocoercivity-compatible Galerkin methods for inhomogeneous
Fokker-Planck equations
In preparation.
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Choice of Galerkin space V: d>?2

Solution’s domain (0, t¢7] x RY x R? is prone to ‘curse of dimensionality’ when
standard FE spaces are used.

In this case, we define V}, to be a suitable reduced complexity space, e.g.,
@ sparse grids / hyperbolic crosses Griebel ('05)

@ sparse anisotropic Gaussians — MuSIK G., Levesley, Subhan ('10)
e TT, SVD, ...

such that they ensure the two crucial properties
Vi, C HY(p) and {1} €V,

It is possible to make a two level (local-global) construction:

Vi = Py(RY x R & Sy

22



Spectral gap: criteria for Poincaré inequalities

Theorem

Let V € C?(RY) such that e~V is a probability density on R?. If also
1 2
§|V\/(X)| — AV(x) = oo,

as |x| — oo, then u := e~V dx satisfies a Poincaré inequality.

23



