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A historical example on causal (or acausal?) chains
◼ The assassination of the Austrian Archduke Franz Ferdinand led Austria-Hungary to 

declare war on Serbia and triggered World War I.

◼ The assassination is related to a mistake of Archduke’s driver (see map).
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◼ Would the World War I break 
out if the driver did not do the 
mistake?

◼ Would the World War II occur if 
World War I did not?

◼ Would the current war (or 
special military operation) in 
Ukraine occur if World War II did 
not?

◼ Will war in Ukraine lead to 
World War III? https://commons.wikimedia.org/wiki/File:Atentado_de_Sarajevo_en.png

https://commons.wikimedia.org/wiki/File:Atentado_de_Sarajevo_en.png


Unanswered causality questions on another current drama

◼ What caused SARS-CoV-2?
❑ A natural process in animals?
❑ A laboratory leak of a constructed virus?
❑ A planned political/military action? 

◼ What does SARS-CoV-2 cause?
❑ A variety of dangerous symptoms?
❑ High or low mortality?

◼ What do the COVID vaccines cause?
❑ Protection from COVID?
❑ Less severe symptoms in case of COVID infection?
❑ Decreased or increased risk for infection, hospitalization and death?
❑ Side effects less or more severe than COVID?
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Difficulties in answering 
the questions
◼ The graphs show that some countries with 

larger percentage of vaccinated population 
against COVID have also larger percentage 
of COVID deaths.

◼ For legibility of the graph, data for only a 
few countries are shown.

◼ The impression is contrary to expectation.
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See original graphs at:

https://ourworldindata.org/explorers/coronavirus-data-
explorer?zoomToSelection=true&facet=none&uniformYAxis=0&hideControls=true&Me
tric=Confirmed+deaths&Interval=Cumulative&Relative+to+Population=true&Color+by+
test+positivity=false&country=GRC~TUR~OWID_WRL~RUS~MDA~ARM~SYR~PER

https://ourworldindata.org/explorers/coronavirus-data-
explorer?zoomToSelection=true&facet=none&uniformYAxis=0&hideControls=true&Me
tric=People+fully+vaccinated&Interval=Cumulative&Relative+to+Population=true&Colo
r+by+test+positivity=false&country=GRC~TUR~OWID_WRL~RUS~MDA~ARM~SYR~PER

https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&facet=none&uniformYAxis=0&hideControls=true&Metric=Confirmed+deaths&Interval=Cumulative&Relative+to+Population=true&Color+by+test+positivity=false&country=GRC~TUR~OWID_WRL~RUS~MDA~ARM~SYR~PER
https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&facet=none&uniformYAxis=0&hideControls=true&Metric=People+fully+vaccinated&Interval=Cumulative&Relative+to+Population=true&Color+by+test+positivity=false&country=GRC~TUR~OWID_WRL~RUS~MDA~ARM~SYR~PER


Complete macroscopic picture of death vs. vaxx
◼ The graph shows all countries that 

have data in the period from 1 May to 
24 June 2022 and population >= 1 M.

◼ Each point represents one country with 
the latest available data.

◼ Notice the positive correlation 
between the percentages of vaccinated 
population and COVID deaths.
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◼ Possible interpretations 
(where “→” means “causes”):

A. COVID vaccination → COVID death 
(difficult to support).

B. COVID death → COVID vaccination.
(more plausible as people are frightened by deaths and get vaccinated).

C. No causality can be detected; data are spurious 
(the most plausible of the three). 

Data source: https://ourworldindata.org/explorers/coronavirus-data-explorer

(Click on DOWNLOAD and then on Full data (CSV) – All countries)

https://ourworldindata.org/explorers/coronavirus-data-explorer


◼ Positive correlation is also seen 
between the number of COVID cases 
vs. percentage of COVID vaccination.

◼ The graph shows the relationship 
between cases per 1 million people 
(last 7 days) and percentage of 
population fully vaccinated across 68 
countries as of September 3, 2021

◼ It is from a peer-reviewed paper.
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Subramanian, S.V. and Kumar, A., 2021.

Additional macroscopic 
picture—infection vs. 
vaxx



◼ COVID-caused lockdowns 
caused the greatest in 
history decrease of CO2

emissions.

◼ The global CO2 emissions 
were over 5% lower in 
the first quarter of 2020 
than in that of 2019 (IEA, 
2020).

◼ However, the increasing 
pattern of atmospheric 
CO2 concentration, as 
measured in Mauna Loa, 
did not change.
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Graph from Koutsoyiannis and Kundzewicz (2020); see next page.

COVID and an unfortunate experiment 



Causal relationship between 
CO₂ & temperature: 
“ὄρνις ἢ ᾠὸν;” (“hen or egg?”)
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T↗ CO₂↗
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Instrumental temperature 
and CO₂ data in search of 
causality

Which is the cause and which the effect?
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Differenced monthly time series of global temperature 
(UAH) and logarithm of CO₂ concentration (Mauna 
Loa)

Annually averaged time series of differenced 
temperatures (UAH) and logarithm of CO₂ 
concentration (Mauna Loa). Each dot represents the 
average of a one-year duration ending at the time of 
its abscissa. 

Graphs from Koutsoyiannis and Kundzewicz (2020). Notice that 
logarithms of CO₂ concentration are used for linear equivalence with 
temperature. The differenced processes represent changes in the 
original processes.



Changes in CO₂ 
follow changes in 
global temperature
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Which is the cause 
and which the effect?

Maximum cross-correlation coefficient (MCCC) and corresponding time lag in months 

Monthly time 
series

Annual time series –
sliding annual window

Annual time series –
fixed annual window

Temperature - CO₂ series MCCC Lag MCCC Lag MCCC Lag

UAH – Mauna Loa 0.47 5 0.66 8 0.52 12

UAH – Barrow 0.31 11 0.70 14 0.59 12

UAH – South Pole 0.37 6 0.54 10 0.38 12

UAH – Global 0.47 6 0.60 11 0.60 12

CRUTEM4 – Mauna Loa 0.31 5 0.55 10 0.52 12

CRUTEM4 – Global 0.33 9 0.55 12 0.55 12

Graph and table from Koutsoyiannis and 
Kundzewicz (2020). 



Development and application of a theoretical framework
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Philosophical reflections—acknowledging difficulties
Aristotle (384 – 322 BC; Image 
source: Visconti, 1817):

that which when present is the 
cause of something, when 
absent we sometimes consider 
to be the cause of the contrary.

Plutarch  (AD  6 –119; Greek 
Middle Platonist philosopher):

First posed the hen or the egg
type of causality as a 
philosophical problem: 
“Πότερον ἡ ὄρνις πρότερον ἢ τὸ
ᾠὸν ἐγένετο” (Πλούταρχος, 
Ηθικά, Συμποσιακὰ Β, 
Πρόβλημα Γ).

David Hume (1711– 1776; 
Scottish Enlightenment 
philosopher):

the concept of a cause is 
merely a way we use to 
describe regularities. 

Immanuel Kant (1724–1804, 
German Enlightenment 
philosopher):

(a) causality is understood in 
terms of rule-
governedness;

(b) the temporal causal 
order is irreversible.
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Theoretical probabilistic approaches to causality

Patrick Suppes (1922 –2014; American philosopher—Stanford Univ.)

Definition: An event Bt′ [occurring at time t′] is a prima facie cause of the event 
At [occurring at time t] if and only if (i) 𝑡′ < 𝑡, ii 𝑃 𝐵𝑡′ > 0, (iii) 𝑃(𝐴𝑡|𝐵𝑡′) >
𝑃 𝐴𝑡

Our note: The definition is not very useful as it almost identifies causality with 
dependence: In fact it says that any two events that are neither synchronous 
nor independent establish a (prima facie) causal relationship.

David Cox (1924 –2022;  British statistician—Oxford)

To the above three conditions of the definition he added  a fourth: (iv) there is 

no event 𝐶𝑡′′ at time 𝑡′′ < 𝑡′ < 𝑡 such that 𝑃 𝐴𝑡 𝐵𝑡′𝐶𝑡′′ = 𝑃 𝐴𝑡 𝐵𝑡′𝐶𝑡′′ .

Our note: While this addition is certainly a theoretical advance, it is impractical: 
One cannot enumerate all events that happened before time 𝑡′ and calculate 
their related conditional probabilities.
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Suppes (1970)

Cox (1992)



Applied probabilistic approaches to causality
Clive Granger (1934 – 2009; British-American econometrician—Univ. Nottingham 
and Univ. California, San Diego; Nobel in Economics, 2003)

Mostly known for the so-called “Granger causality test”, based on the linear 
regression equation  𝑦𝜏 = σ

𝑗=1
𝜂 𝑎𝑗𝑦𝜏−𝑗+ σ

𝑗=1
𝜂 𝑏𝑗𝑥𝜏−𝑗+ 𝜀𝜏. If the coefficients 𝑏𝑗

are nonzero, the interpretation is that the process 𝑥𝜏 causes 𝑦𝜏. 

Our notes: We find the framework problematic, both formally and logically:
❑ Formally testing hypotheses in geophysics can be inaccurate (by orders of 

magnitude) due to time dependence.
❑ The test is about prediction, which is fundamentally different from causality.

Judea Pearl (born 1936; Israeli-American computer scientist and philosopher) 

He proposed a framework for causality combining probability with graph 
theory.

Our notes: We find the framework problematic, both formally and logically:
❑ In using conditional probability, the chain rule is used inappropriately.
❑ It is based on the assumption that we already have a causal graph—a way of 

identifying causes.
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Pearl (2009); Pearl et al. (2016)

Granger (1969)



Premises of the developed methodology  
◼ Our framework is for open systems (in particular, geophysical systems), in which:

❑ External influences cannot be controlled or excluded. 

❑ Only a single realization is possible.

❑ There is dependence in time.

◼ Our framework is not formulated on the basis of events, but of stochastic processes.

◼ It is understood that only necessary conditions of causality can be investigated using 
stochastics. The usefulness of this objective lies in its ability:

❑ to falsify an assumed causality and

❑ to add statistical evidence, in an inductive context, for potential causality and its 
direction.

◼ The onl  “hard” requirement kept from previous studies is the time precedence of the 
cause from the effect.
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Mathematical representation
◼ Any two stochastic processes 𝑥 𝑡 and 𝑦 𝑡 can be related by

𝑦 𝑡 = ∞−׬
∞

𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ + 𝑣(𝑡)

where 𝑔(ℎ) is the Impulse Response Function (IRF) and 𝑣(𝑡) is another process uncorrelated to 
𝑥 𝑡 .

◼ There exist infinitely many pairs (𝑔 ℎ , 𝑣 𝑡 ) of which we find the least squares solution—LSS: 
that resulting in the min var 𝑣 𝑡 , or the max explained variance 𝑒 ≔ 1 − var 𝑣 𝑡 /var[𝑦 𝑡 ].

◼ Assuming that the LSS 𝑔 ℎ has been determined, the system (𝑥 𝑡 , 𝑦 𝑡 ) is: 

1. potentially causal if 𝑔 ℎ = 0 for any ℎ < 0, while the explained variance is non negligible;

2. potentially anticausal if 𝑔 ℎ = 0 for any ℎ > 0, while the explained variance is non 
negligible (this means that the system (𝑦 𝑡 , 𝑥 𝑡 ) is potentially causal);

3. potentially hen-or-egg (HOE) causal if 𝑔 ℎ ≠ 0 for some ℎ > 0 and some ℎ < 0, while the 
explained variance is non negligible;

4. noncausal if the explained variance is negligible.

◼ The framework of causality identification is constructed for case 3, with all other three cases 
resulting as special cases.
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Illustration 
of the four 
different 
cases of 
potential 
causality
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IR
F

< 0                                0                                 > 0
Time lag

Potentially causal Potentially anticausal

Potentially hen-or-egg causal Noncausal



Additional mathematical considerations 
◼ We also set additional desiderata for

(a) an adequate time span 𝕙 of ℎ (the causal action is not instant);
(b) a nonnegative 𝑔 ℎ ≥ 0 for all ℎ ∈ 𝕙 (replacing 𝑥 𝑡 with −𝑥 𝑡 for negative correlation);

(c) a smooth 𝑔(ℎ) assured by a constraint 𝐸 ≤ 𝐸0, where 𝐸 is determined in terms of the

second derivative of 𝑔(ℎ) (𝛦 ≔ ∞−׬
∞

𝑔′′ ℎ
2
dℎ) and 𝐸0 is a positive number.

◼ Although the theoretical framework is formulated in terms of natural (continuous) time, the 
estimation of the IRF relies on data in an inductive manner, and data are only available in 
discrete time. Conversion of the continuous- to a discrete-time framework results in

𝑦𝜏 = σ𝑗=−∞
∞ 𝑔𝑗𝑥𝜏−𝑗 + 𝑣𝜏

where the sequence 𝑔𝑗 can be determined accurately from the function 𝑔 ℎ . 

◼ Furthermore, any data set is finite and allows only a finite number of 𝑔𝑗 terms to be estimated. 
Therefore, in the applications the summation limits ±∞ are replaced by ±𝐽, assuming that 𝑔𝑗 = 0
for 𝑗 > 𝐽, where, 𝐽 should be chosen much lower than the length of the dataset.

◼ A solver can be used to resolve the constrained optimization problem: The determination of 𝑔𝑗 is 

based on the minimization of var 𝑣 𝑡 subject to the constraints. 
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Application to the temperature – [CO₂] problem

Conclusion: The common perception that increasing [CO₂] causes increased T can be excluded as it 
violates the necessary condition for this causality direction. 
In contrast, the causality direction T → [CO₂] is plausible.
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(counter-directional) with explained variance 23%  



Additional evidence

Conclusion: The causal system  (T,[CO₂]) is more consistent to realit  than the anticausal system 
([CO₂], T). This adds evidence that the actual causality direction is  T → [CO₂].
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More additional 
evidence
◼ For those fearing that our 

algorithm may produce 
incorrect results, a different 
algorithm was additionally used, 
whose results are shown in the 
graphs on the right.

◼ Namely a parametric IRF was 
constructed based on alpha 
basis functions (4 in upper 
graph, just one in lower graph).

◼ These results confirm that (T, 
[CO₂]) is potentiall  causal and 
([CO₂], T) potentially anticausal. 

◼ This adds evidence that the 
causality direction is  T → [CO₂].
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Conclusions
◼ Causality is a central concept in science, philosophy and life, with very high 

economic importance.

◼ Recently causal inference has become an arena of enormous interest.

◼ Yet our review of various approaches to causality over the entire knowledge 
tree, from philosophy to science and to scientific, technological and socio-
political application, locates major problems that are unsolved.

◼ Our method posits a more modest objective: To determine necessary (not 
sufficient) conditions that are operationally useful in identifying or falsifying 
causality claims.

◼ It also replaces events with stochastic processes.

◼ Application of the method to climate shows that it is the increase of 
temperature that caused increased CO₂ concentration, despite the common 
perception for the opposite causality direction.
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