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Problem formulation 

Equations

Wave-current-body interaction 
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Problem formulation 

Equations

Wave-current-body interaction 
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Conditions
§ Inlet / Outlet
§ Solid boundaries /bottom (zero relative 

normal velocity
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Numerical formulation  

Equations

𝜶𝝋 = 𝝏𝒏𝝋 ∗ 𝑮 − 𝛗 ∗ 𝝏𝒏𝑮

Wave-current-body interaction 

• Equivalent to translating the Laplacian 
into a kinematic condition

• The eq “projects “all” of the flow 
information on FS 

• On FS none of the Dirichlet or Neumann 
data is defined; instead their relation is 
introduced. 

• The eq is solved using piecewise linear 
distributions & analytic integration

• The implementation is equivalent to 
projecting the eq using pc basis functions

The same eq is also used for calculating the 
time derivative of the potential

Details 
§ Double nodes at FS end points 

this results when the inner and outer (incoming) 
solutions are matched along the inlet in a weak 
(variational) formulation context.  

§ Re-griding of the FS (and eventually the solid 
bodies)

§ Inlet: wave introduction through a ramp 
function 
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Numerical formulation  

Dynamic equations

Wave-current-body interaction 

Details 
§ Double nodes at FS end points 

this results when the inner and outer (incoming) 
solutions are matched along the inlet in a weak 
(variational) formulation context.  

§ Re-griding of the FS (and eventually the solid 
bodies)

§ Inlet: wave introduction through a ramp 
function 

• Integration in time using RK 4th order
• Semi- and full Lagrangian formulation for 

the FS were implemented
• + the body motions  
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Numerical results

Soliton H’=0.2

FS elevation at station g0: x’=-5
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Numerical results

Soliton H’=0.2

position x’
g0: -5.00
g1: 20.96
g3: 22.55
g5: 23.68
g7: 24.68
g9: 25.91

FS elevation at stations g1-g9
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Numerical results

Soliton H’=0.2

Free-surface snap shots until breaking

time t’
a: 2.152
b: 2.776
c: 3.556
d: 4.092
e: 4.724
f:  5.064
g: 5.392
h: 5.648
i:  5.904
j:  6.152
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Numerical results

§ Conditions: ξ=ω2B/2=0.2:2
H=7cm

§ Comparisons with: Experiments [Nojiri - Murayama 1975]
Predictions [Tanizawa 1998]

[Koo – Kim 2004, 2007]
analytic approach [Maruo 1960] (drift force)

Floating platform
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Numerical results

1st harmonic of motions and drift force 

ü Consistent results at resonance (up to 
θy~30o) 

ü Consistent estimation of drift force (via 
surface pressure integration) 

Surge - Η=7cm Pitch - Η=7cm

drift force - Η=7cm
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Numerical results
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Non-linear effects

Horizontal force harmonics Vertical force harmonics

Onset of non-linear effects:
§ Resonance (horizontal force) 
§ High frequencies (vertical force)
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Outlook

ü Although the specific work did not implement a numerical method by
directly using variational formalism, it benefitted a lot in defining its details

ü The specific implementation was successfully tested in a number of cases

The next step is to extend the specific methodology into 3D problems, which
will hopefully be done in near future
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End of presentation


