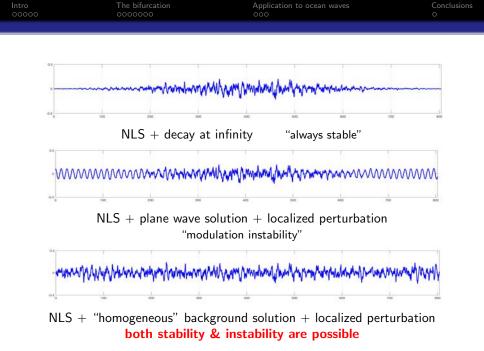


The Alber equation: Landau damping & rogue waves in the ocean

Agissilaos G. Athanassoulis University of Dundee

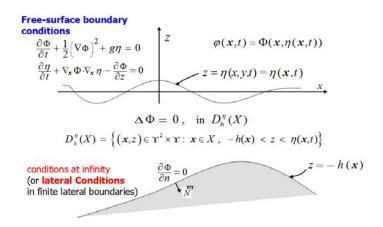
WAVES, PROBABILITIES AND MEMORIES NTUA, 4-5 July 2022



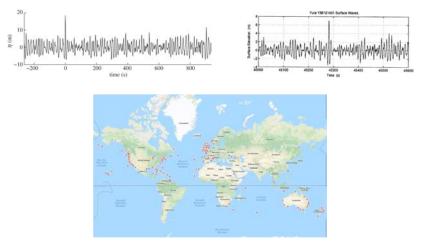
Intro	The bifurcation	Application to ocean waves	Conclusions
00000			
Introduction			

Classical ideal hydrodynamics - the Cauchy problem

- Assume perfect knowledge of all initial fields
- Assume bounded domain or very simple behaviour at infinity
- Recover everything at later times



What can the Cauchy problem say, e.g., about Rogue Waves?



Map from [E. Didenkulova, Ocean & Coastal Management 2020]

Find initial conditions that reproduce them (?)

Intro	The bifurcation	Application to ocean waves	Conclusions
00000			
Introduction			

Random inhomogeneous fields of nonlinear water waves

Background:

- I. E. Alber, Proceedings of the Royal Society A (1978)
 ~ 240 citations in Google scholar
- D. R. Crawford, P. G. Saffman, H. C. Yuen, Wave motion (1980) \sim 150 citations in Google scholar

This talk is based on:

- A. Athanassoulis, G. Athanassoulis and T. Sapsis, Journal of Ocean Engineering and Marine Energy (2017)
- A. Athanassoulis, OMAE 2018
- A. Athanassoulis, G. Athanassoulis, M. Ptashnyk and T. Sapsis, Kinetic and Related Models (2020)
- A. Athanassoulis and O. Gramstad, Fluids (2021)

Intro ○○○●○	The bifurcation	Application to ocean waves	Conclusions 0
Towards moment equ	uations		
Ocean wa	ives modelling		

• Gravity waves can be approximated by an **envelope** equation,

$$\eta(x,t) = \mathsf{Re}\left[u(x,t)e^{i(k_0\cdot x - \omega_0\cdot t)}\right], \quad \omega_0 = \sqrt{gk_0},$$

which turns out to be of NLS type

$$i\partial_t u + \underbrace{\frac{\sqrt{g}}{8k_0^{\frac{3}{2}}}}_{p/2} \Delta u + \underbrace{\frac{\sqrt{g}}{2}k_0^{\frac{5}{2}}}_{q/2} |u|^2 u = 0, \qquad k_0 \sim (0.01, 2).$$

The order parameter is **slope**, $\beta \sim \frac{H_s k_0}{8\pi} < 0.1$.

 Sea states are typically stationary & homogeneous in mesoscales, characterised primarily through their autocorrelation / spectrum,

$$E\Big[u(x,t)\overline{u}(x',t)\Big]=\Gamma(x-x')+o(1),$$

$$\mathcal{F}_{y \to k}[\Gamma(y)] = P(k)$$

Intro

The bifurcation

Application to ocean waves

Conclusions 0

Towards moment equations

 2^{nd} moments + Gaussian closure + Quasi-homogeneity

$$i\partial_t u + \frac{p}{2}\Delta u + \frac{q}{2}|u|^2 u = 0$$

$$|R(\alpha, \beta, t) = E[u(\alpha, t)\bar{u}(\beta, t)]$$

$$\downarrow$$

$$i\partial_{t}R + \frac{p}{2} (\Delta_{\alpha} - \Delta_{\beta}) R + \frac{q}{2} E \Big[u(\alpha, t) \overline{u}(\beta, t) [u(\alpha, t) \overline{u}(\alpha, t) - u(\beta, t) \overline{u}(\beta, t)] \Big] = 0$$

gaussian closure : Complex Isserlis Theorem, $E\Big[u(\alpha,t)\bar{u}(\alpha,t)u(\alpha,t)\bar{u}(\beta,t)\Big] = 2E\Big[u(\alpha,t)\bar{u}(\beta,t)\Big]E\Big[u(\alpha,t)\bar{u}(\alpha,t)\Big]$ +
quasi-homogeneity : $R(\alpha,\beta,t) = \Gamma(\alpha-\beta) + \varepsilon\rho(\alpha,\beta,t)$ \downarrow

 $i\partial_t \rho + \frac{\rho}{2} \left(\Delta_{\alpha} - \Delta_{\beta} \right) \rho + q \left[\mathsf{\Gamma}(\alpha - \beta) + \varepsilon \rho(\alpha, \beta) \right] \left[\rho(\alpha, \alpha) - \rho(\beta, \beta) \right] = \mathbf{0}.$ [I. E. Alber, PRSA 1978]

Intro 00000	The bifurcation	Application to ocean waves	Conclusions
00000	000000	000	
Heuristics			
I ne Alb	er-Fourier equatic	n (AF)	

f is the inhomoegeneity, *in an appropriate frame of reference*. The spectrum P describes the homogeneous background.

$$\overbrace{\partial_{t}f - 4\pi^{2}ipk \cdot Xf}^{\text{free-space}} \underbrace{ qi \left[P(k - \frac{X}{2}) - P(k + \frac{X}{2}) \right] \breve{n}(X, t)}_{\text{interaction with spectrum}} + \underbrace{eqi \int_{s} \breve{n}(s, t) \left[f(X - s, k - \frac{s}{2}) - f(X - s, k + \frac{s}{2}) \right] ds}_{\text{self-interaction of inhomogeneity}} = 0.$$

00000 Heuristics	000000	Application to ocean waves 000	
Heuristics			

Linearised problem:

$$\begin{split} \partial_t f &- 4\pi^2 i p k \cdot X f + q i \Big[P\Big(k - \frac{X}{2}\Big) - P\Big(k + \frac{X}{2}\Big) \Big] \check{n}(X, t) = 0, \\ f(X, k, 0) &= f_0(X, k) = \mathcal{F}_{x \to X}^{-1} [w_0], \qquad \check{n}(X, t) = \int_{\mathbb{R}^d} f(X, \xi, t) d\xi. \end{split}$$

-

Mild form:

$$f(X, k, t) - \overbrace{e^{4\pi^{2}ipk \cdot Xt} f_{0}(X, k)}^{\text{free space solution}} = -qi \int_{0}^{t} e^{4\pi^{2}ipk \cdot X(t-\tau)} \Big[P\Big(k - \frac{X}{2}\Big) - P\Big(k + \frac{X}{2}\Big) \Big] \check{n}(X, \tau) d\tau,$$

Integrate in k:

$$\check{n}(X,t) - \check{n}_f(X,t) = \int_0^t h(X,t-\tau)\check{n}(X,\tau)d\tau,$$

$$h(X,t) = 2q \sin(2\pi^2 p X^2 t) \check{P}(2\pi p X t),$$

Laplace transform:

$$\begin{split} \widetilde{n}(X,\omega) &= \widetilde{n}_f(X,\omega) + \widetilde{h}(X,\omega)\widetilde{n}(X,\omega) \quad \Rightarrow \\ \Rightarrow \quad \widetilde{n}(X,\omega) &= \frac{1}{1 - \widetilde{h}(X,\omega)}\widetilde{n}_f(X,\omega). \end{split}$$

Intro	The bifurcation	Application to ocean waves	Conclusions
	000000		
Heuristics			

$$\widetilde{n}(X,\omega) = \underbrace{\frac{1}{1-\widetilde{h}(X,\omega)}}_{\text{transfer function}} \widetilde{n}_f(X,\omega), \qquad \widetilde{h} = \widetilde{h}[P](X,\omega).$$

Penrose-type stability condition

 $\exists \kappa > \text{0 such that}$

$$\inf_{\mathbf{X}, \operatorname{Re} \omega > 0} |1 - \widetilde{h}(\mathbf{X}, \omega)| \ge \kappa.$$

Then in principle we can invert $\tilde{n}(X, \omega) \mapsto \check{n}(X, t)$ and even get decay in time (with lots of technical work).

Intro	
0000	

The bifurcation

Application to ocean waves 000

Conclusions 0

Landau damping

Theorem [A., Athanassoulis, Ptashnyk & Sapsis, KRM (2020)]

Let $P \in \mathcal{S}(\mathbb{R})$ be a background power spectrum of compact support which is stable in the sense that P satisfies the Penrose stability condition, and

$$\begin{split} &\partial_t f - 4\pi^2 i p k \cdot X f + q i \Big[P\Big(k - \frac{X}{2}\Big) - P\Big(k + \frac{X}{2}\Big) \Big] \check{n}(X, t) = 0, \\ &\check{n}(X, t) = \int_{\xi} f(X, \xi, t) d\xi, \qquad f(X, k, 0) = f_0(X, k) \in \Sigma' \end{split}$$

for $r \in \mathbb{N}$ large enough. Then $\exists C > 0$ s.t.

$$\|X\check{n}\|_{L^{2}_{X,t}} = \|\partial_{x}n\|_{L^{2}_{X,t}} \leqslant C \frac{\kappa+1}{\kappa^{2}} \|f_{0}\|_{\Sigma^{r}}$$
(1)

and there exists a wave operator $\mathbb W$ s.t.

$$\lim_{t \to +\infty} |||f(X, k, t) - E(t) \mathbb{W}f_0||| = 0.$$
(2)

- Contrary to usual LD for Vlasov, no mean-zero required for w₀(x, k). Thus we have linear LD for energy-carrying wavetrains interacting with a homogeneous background.
- Explains why free-space dynamics works so well in so many cases.

 Intro
 The bifurcation
 Application to ocean waves
 Conclusions

 00000
 0000 ● 00
 000
 0
 0

 The stability condition

Working with the (in)stability condition

How do you check

$$\exists \kappa > 0 \qquad \inf_{X, \operatorname{Re} \omega > 0} |1 - \widetilde{h}(X, \omega)| \ge \kappa?$$

More or less through

$$\exists X_* \exists \operatorname{Re} \omega_* \geqslant 0 \qquad \widetilde{h}(X_*, \omega_*) = 1$$

A nonlinear system of two equations in three unknowns,

$$\mathsf{Re}\left(\widetilde{h}(X_{*}, \textbf{\textit{a}}_{*} + i \textbf{\textit{b}}_{*})\right) = 1 \quad \mathsf{and} \quad \mathsf{Im}\left(\widetilde{h}(X_{*}, \textbf{\textit{a}}_{*} + i \textbf{\textit{b}}_{*})\right) = 0,$$

where of course $\omega_* = a_* + ib_*$.

Intro 00000	The bifurcation ○○○○●○	Application to ocean waves	Conclusions O
The stability condi	tion		
Denote	by $\mathbb{H}[f](t)$ the Hilbert tra	ansform,	
		$1 \int f(x)$	

$$\mathbb{H}[f](t) := p.v.\frac{1}{\pi} \int \frac{f(x)}{t-x} dx.$$

Theorem [A., Athanassoulis, Ptashnyk & Sapsis, KRM (2020)]

The following are equivalent:

(1).
$$\inf_{\substack{\text{Re }\omega>0,\\X\in\mathbb{R}}} |1-\widetilde{h}(X,\omega)| = 0$$

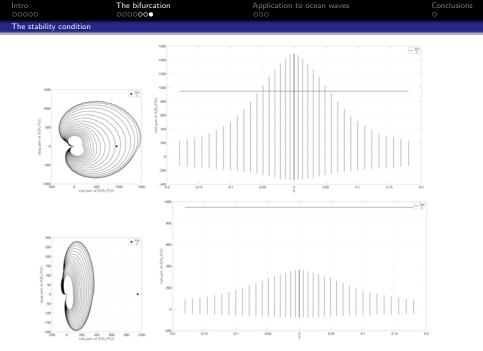
(2).
$$\exists X_* \in \mathbb{R}, \quad \Omega_* \in \mathbb{C} \setminus \mathbb{R}$$
 : $\mathbb{H}[D_{X_*}P](\Omega_*) = \mathbb{H}[D_{X_*}P](\overline{\Omega}_*) = \frac{4\pi p}{q}$
or

$$\exists X_*, \Omega_* \in \mathbb{R}$$
 : $\mathbb{H}[D_{X_*}P](\Omega_*) = \frac{4\pi p}{q}$ and $D_{X_*}P(\Omega_*) = 0$.

(3). $d(\overline{\Gamma}, 4\pi p/q) = 0$, where $\mathbb{S}[f](t) = \mathbb{H}[f](t) - if(t)$ and

$$\Gamma_X := \{ \mathbb{S}[D_X P(\cdot)](t), \ t \in \mathbb{R} \} \cup \{ 0 \}, \qquad \check{\Gamma}_X = \{ z \in \mathbb{C} | z \text{ enclosed by } \Gamma_X \},$$

$$\overline{\Gamma}:=\bigcup_{X\in\mathbb{R}}\overset{\circ}{\Gamma}_X.$$



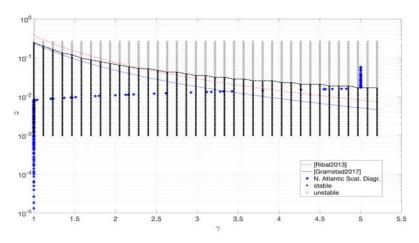
Intro 00000 The bifurcatio

Application to ocean waves

Conclusions 0

Stability of spectra

Stability region for JONSWAP [AAPS KRM 2020]

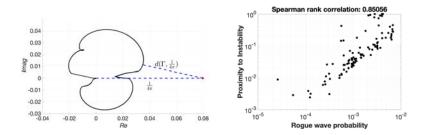


North Atlantic Scatter Diagram data from [DNV-GL, DNVGL-RP-C205: Environmental Conditions and Environmental Loads, Tech. Rep., August 2017] Intro The bifurcation Application to ocean waves Conclusions ocean waves of the bifurcation to ocean waves of the conclusions of the bifurcation of the concern waves of the conc

Alber v. HOSM+Monte Carlo, [A., Gramstad, Fluids 2021]

Are there "more stable" and "less stable" spectra?

Nondimensional **"proximity to instability"** according to our analysis versus Monte Carlo simulations of the same sea state with a broadband solver.



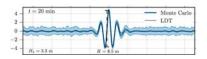
Intro	The bifurcation	Application to ocean waves	Conclusions
00000		○○●	0
Unstable modes			

If there are unstable wavenumbers,

$$\widetilde{h}(X_*,\omega_*) = 1$$
 for some $X_0 \in \mathbb{R}, \ \operatorname{Re} \omega_* > 0$

they give rise to **unstable modes**. These seem to successfully capture some inherent scalings for Rogue waves.

[A., Athanassoulis, Sapsis, JOEME (2017)] Scalings of unstable modes



Intro 00000	The bifurcation	Application to ocean waves	Conclusions •
Summary			

• Alber equation: 2nd moment theory for NLS with stochastic initial data over a homogeneous background

• Key features:

bifurcation between dispersion & modulation instability mathematical theory analogous to LD, many open questions still

• Why ocean engineers care:

Finally takes into account metocean data! Results are plausible when compared to ocean data Provides insights on development of extreme events

• 2D, broadband versions of this are possible

Thank you very much!