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NLS + decay at infinity “always stable”
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NLS + plane wave solution + localized perturbation
“modulation instability”

e R

NLS + “homogeneous” background solution + localized perturbation
both stability & instability are possible
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Classical ideal hydrodynamics — the Cauchy problem

@ Assume perfect knowledge of all initial fields
@ Assume bounded domain or very simple behaviour at infinity

@ Recover everything at later times

Free-surface boundary
e(x,1) = D(x,7(x,1))

conditions
oo | 1 \2

'6-'1"+'2 Vo| +gn =20
on v ov.n-99 - o ks 2
ar TV OVan — OA/;‘\/z—I](.\._\.I‘) n(x,t)
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X

AD =0, in DJ(X)

D/(X) = {(.\'.:)e YxY: xeX, -h(x) <z< ;;(xJ)}
oo _ 0’ EEE /: h(x)

conditions at infinity 0
(or lateral Conditions C{’,{m
N
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Introduction

What can the Cauchy problem say, e.g., about Rogue Waves?
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Map from [E. Didenkulova, Ocean & Coastal Management 2020]

Find initial conditions that reproduce them (?)
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Introduction

Random inhomogeneous fields of nonlinear water waves

Background:

@ |. E. Alber, Proceedings of the Royal Society A (1978)
~ 240 citations in Google scholar

@ D. R. Crawford, P. G. Saffman, H. C. Yuen, Wave motion (1980)
~ 150 citations in Google scholar

This talk is based on:

@ A. Athanassoulis, G. Athanassoulis and T. Sapsis,
Journal of Ocean Engineering and Marine Energy (2017)

@ A. Athanassoulis, OMAE 2018

@ A. Athanassoulis, G. Athanassoulis, M. Ptashnyk and T. Sapsis,
Kinetic and Related Models (2020)

@ A. Athanassoulis and O. Gramstad, Fluids (2021)
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Towards moment equations

Ocean waves modelling

@ Gravity waves can be approximated by an envelope equation,

nix, £) = Re [ulx, )00 | wo = \/gho,

which turns out to be of NLS type

i+ Y& Au+ gko% WPu=0, k ~ (0.01,2).

8k, 2
~—— q/2
p/2

The order parameter is slope, 5 ~ % < 0.1.

@ Sea states are typically stationary & homogeneous in mesoscales,
characterised primarily through their autocorrelation / spectrum,

E[u(x, £)a(x, t)] —(x—x') + o(1),

Fy-ilF(y)] = P(k)
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Towards moment equations

2" moments + Gaussian closure + Quasi-homogeneity

ioeu + 5Au + FufPu =0

R(a,B,t) = Ei[u(a, t)a(s, t)]

i0:R + 5 (Ao — Ag) R+
+4E|u(a, )d(8, t) [u(ex, )i, t) — u(B, )d(B, £)] | = 0
|

gaussian closure :  Complex Isserlis Theorem,
E[u(a, t)a(a, t)u(a, t)a(p, t)] = 2E[u(a, t)a(s, t)] E[u(a, t)a(a, t)]
+
quasi-homogeneity : R(a,8,t) = (o — ) + ep(a, B, t)
!

i0ep+ 5 (Do — Bg) p+ q[M(a—PB) +ep(a, B)] [p(ar, @) — p(B,8)] = 0.
[I. E. Alber, PRSA 1978]
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The bifurcation
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Heuristics

The Alber-Fourier equation (AF)

f is the inhomoegeneity, in an appropriate frame of reference. The spectrum P

describes the homogeneous background.

free-space
’ 5. > X X\ |«
Ocf — 4nsipk - Xf + qi P(k—E)—P(k+E) A(Xx,t) +

)

interaction with spectrum

+5qifrv7(s, 0 [FX sk 2~ F(X s k+ 3)|ds =0

)

self-interaction of inhomogeneity

HX, ) = ff(x,é, 0de, FX.k,0) = H(X. k).
13 initial data

N _

position density
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Heuristics

Linearised problem:
o.f — dn2ipk - Xf + qi[P(k - g) _ P(k n g)}ﬁ(x, t) =0,
f(X, k,0) = (X, k) = F_ ' [wo], (X, t) = §pa F(X, € t)dE.
Mild form:
free space solution
—_——~
FX,k t) = T PXp(X k) =
t .
= —qi [ XD (k- X) — Pk + X)X, r)dr,
0

Integrate in k:

A(X, ) — A (X, t) = §g h(X, t — 7)i(X, 7)dT,

h(X,t) = 2q sin(2m2pX2t) P(2mpXt),

Laplace transform:
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The bifurcation
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Heuristics
A(X, w) L e (X, w) B — BPI(X,w)
) = PV f ) ) = )
1— h(X,w)
—_——

transfer function

Penrose-type stability condition
dk > 0 such that

inf |1 —h(X,w)| > k.
X,Re w>0 J

Then in principle we can invert 1(X,w) — A(X,t) and even get decay in time
(with lots of technical work).
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Landau damping

Theorem [A., Athanassoulis, Ptashnyk & Sapsis, KRM (2020)]

Let P € S(R) be a background power spectrum of compact support which is
stable in the sense that P satisfies the Penrose stability condition, and

ocf — 4n2ipk - Xf + qi[P(k _ g) _ P(k i g)]ﬁ(x, t) =0,
(X, 1) = §, F(X, 6 )dE,  F(X,k,0) = fo(X, k) € &’

for r € N large enough. Then 3C > 0 s.t.

> k+1
X7l , = I8l < 5l (1)
and there exists a wave operator W s.t.
im [IF(X, k, 1) = E()Wh]| = 0. @ |

@ Contrary to usual LD for Vlasov, no mean-zero required for wy(x, k).
Thus we have linear LD for energy-carrying wavetrains interacting with a
homogeneous background.

@ Explains why free-space dynamics works so well in so many cases.
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The stability condition

Working with the (in)stability condition

How do you check

3k > 0 inf |1 —h(X,w)| > K?
X,Rew>0

More or less through

~

IX, JRews =0 h(Xy,ws) = 1

A nonlinear system of two equations in three unknowns,
Re (E(X*,a* n ib*)) —1 and Im (E(X*7a* v ib*)) —0,

where of course wy = ay + iby.
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The stability condition

Denote by H[f](t) the Hilbert transform,
H[f](t) := p.v.l f mdx.

™ t—Xx

Theorem [A., Athanassoulis, Ptashnyk & Sapsis, KRM (2020)]
The following are equivalent:
(1). inf [1—hA(X,w)| =0

Re w>0,

XeR
(2). IX«€R, QueC\R : H[Dx,P](Qx) = H[Dx, P](Qx) = 22
or
I Xs, Qe €R 1 H[Dx, P](Qs) = 22 and Dx, P(Q2x) = 0.

(3). d(T,4np/q) = 0, where S[f](t) = H[f](t) — if(t) and

Fx := {S[DxP()](t), teR} {0},  Fx = {ze C|z enclosed by x},
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The stability condition
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Application to ocean waves
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Stability of spectra

Stability region for JONSWAP [AAPS KRM 2020]
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North Atlantic Scatter Diagram data from [DNV-GL, DNVGL-RP-C205:
Environmental Conditions and Environmental Loads, Tech. Rep., August 2017]
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Application to ocean waves
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Stability of spectra

Alber v. HOSM+Monte Carlo, [A., Gramstad, Fluids 2021]

Are there “more stable” and “less stable” spectra?

Nondimensional “proximity to instability” according to our analysis
versus

Monte Carlo simulations of the same sea state with a broadband solver.

0 Spearman rank correlation: 0.850.5'6
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Application to ocean waves
o

Unstable modes

If there are unstable wavenumbers,

~

h(X«,wy) =1 for some Xp € R, Rew, >0

they give rise to unstable modes. These seem to successfully
capture some inherent scalings for Rogue waves.

= Monte Carlo
LDT

[Dematteis, Grafke, Vanden-Eijden, PNAS (2018)]
Monte Carlo + Large Deviations Theory
[A., Athanassoulis, Sapsis, JOEME (2017)] for fully Nonlinear simulations of mNLS
Scalings of unstable modes

18/19



Conclusions
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Summary

@ Alber equation: 2" moment theory for NLS with stochastic initial
data over a homogeneous background

@ Key features:
bifurcation between dispersion & modulation instability
mathematical theory analogous to LD, many open questions still

@ Why ocean engineers care:
Finally takes into account metocean data!
Results are plausible when compared to ocean data
Provides insights on development of extreme events

@ 2D, broadband versions of this are possible

Thank you very much!
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