Machine Learning Techniques in
Acoustical Oceanography
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Machine Learning in Underwater
Acoustics at UoC and FORTH

Inverse Problems in Acoustical Oceanography
(Tomography and Sea-Bed Classification)

Use acoustics in active or passive mode
(Active or Passive Observatories)

Treatment of an inverse problem of the form
f(m,d)=0

e m is the vector of the recoverable parameters and
d is the vector of observables
e fis the model

The parameters m describe the environment



Machine Learning in Underwater
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Machine Learning in Underwater
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Machine Learning in Underwater
Acoustics at UoC and FORTH

e There is a need to define the “observables”
* The observables may be “physical” or “non-physical”
e They form a discrete set of parameters.

e The model describes the way that model parameters and
observables are associated to each other.

e Boundary value problem of acoustic wave propagation in the
marine environment

e The inverse problem is solved by linear or non-linear
methods

* Non linear methods are associated with optimization
processes

e Machine learning is involved in both the definition of the
observables and the treatment of the optimization process.



Machine Learning in Underwater
Acoustics at UoC and FORTH

How to obtain the data set d using ML

o Statistical analysis of the underwater acoustic signals.
* Probabilistic approach (Hidden Markov Models)

Inversion Procedure
e Neural Networks

* Genetic Algorithms



Statistical characterization of an
underwater acoustic signal

e An acoustic signal is decomposed into several scales
(levels) through a multi-resolution analysis employing the
| D wavelet transform and high pass and low pass filters.

* The energies of the resulting wavelet coefficients identify
the content of the signal at each frequency band scale.

e The statistical characterization is based on the accurate
modeling of the tails of the marginal distribution of the
wavelet coefficients at each sub-band.

e The wavelet sub-band coefficients in various scales are
modeled as random variables obeying a symmetric A-
stable distribution.



Statistical characterization of an
underwater acoustic signal



Statistical characterization of an
underwater acoustic signal
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Inversion Procedure
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Inversion results using RBF NN

A very simple simulated example
Sea-bed classification with two parameters ¢, and p,

Water Water Depth 200 m
Source Source Depth Zp 100 m
Receiver
Receiver Depth ZR 100 m
Range R 5000 m
Central Frequency fo 100 Hz
Bandwidth Af 40 Hz
Sound speed c.(0) 1500 m/sec
Bottom
Cu(d) 1490 m/sec
cw(h) I515 m/sec
Depth of the ¢, d 50 m
Sound speed in G 1600 m/sec [1550,1650]
bottom

Bottom density Pb 1200 kg/m3 [1170,1240]



Inversion using RBF NN

Supervised training



Inversion results using RBF NN

Synthetic signals database from the search space
(1550,1650)x( 1170,1240) using a forward propagation
model (MODEI)

Decompose each signal with a 3-level DWT (with db4
wavelet) and get the characteristic parameters using
A-stable modelling (Sa$)

RBF NN training using the estimated Sa$S parameters
of a subset of M=200 signals obtained from distinct
environments within the pre-defined search space

For each environment input X =(,, %5, Ay, 7,)

m=(c.0) A= (e, Frrmnty 72,



Inversion results using RBF NN

True: True:
(c,,p,)=(1570,1185) (c,,p,)=1(1600,1200)



Inversion results using RBF NN

True: True:
(c,,p,)=(1570,1185) (c,,p,)=(600,1200)
Estimated : Estimated :

€,,p,)=(1569.41181.8)  (c,,p,)=(1600.7,1201.8)



Additional notes

 Similarity measures using KLD

dx

;0
d; =D(p(X;8,) || p(X;0,)) = jp(x; 9,)log p(x. :
p(x;0,)

e For optimum results the true signal should be denoised
and deblurred

e A Genetic Algorithm may be applied instead of the NN.

Taroudakis, Smaragdakis, Chapman JCA 2017
Taroudaki, Smaragdakis, Taroudakis, POMA 2016, 2018



Hidden Markov Models

- Characterization of an underwater acoustic
signal taking into account sequential features of a
transformed version of it.

Smaragdakis, Taroudakis, JASA 2020



Hidden Markov Models
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Hidden Markov Models

©® ® @ & &= Signal Scalogram Features -X

They are treated as stochastic variables and consist
the sequence X of the direct observations.

The Markov process Z describes the fact that the
elements of the stochastic sequence belong to specific
states and that the elements of each time step may
stay in the same state or belong to a different state.



Hidden Markov Models
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The latent variables describe the association of the
wavelet coefficients (Signal Scalogram Features) with the
“states” establishing a probabilistic relationship between
the given sequence representing the measured signal X
and the Markov process Z

They are obtained by appropriate training using the
transformed version of the signal.



Hidden Markov Models
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A={m A,60}

Tt is the probability that the coefficients of the first time step are
associated with each of the states.

A is a matrix indicating the probability that the wavelet coefficients of
the time step i belonging to a specific state are associated with
another state at the next time step.

B are the emission probabilities that express the possibility that given
a certain state, the wavelet coefficients at each time step belong to
that state.



Hidden Markov Models
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A={m A,0}

The signal is characterized with a single vector d (signal
observable) with elements the Markov latent variables

X>(X;Z)>d > A

S[n] > A={m A, 0} S[n] 0= (7/1,051,....7/4,a4)

Statistical Characterization



Using a Mixture Density Network

hidden layer
output layer A MDN network is trained using a

input layer
dy O () O, data set involving the parameters of
' :. the environment to be estimated
da () () O, and the corresponding Hidden
Markov Variables
e G={(m",d"),....(m",d")]

The cost function

I /
E(W,b)==>"n> 7z (d,W,b)N (m, |p, (d,W,b),Z (d,W,b))

i=1 p=1
Output of the Network

!
Posterior probability p(m|d) = Zﬂp ()N (m|p (d), X (d))
p=1

distribution



Using a Mixture Density Network

Another very simple simulated example
Sea-bed classification

Pekeris environment

m" = (p™, ™) = (1300 kg / m*,1700 m/s)  To be estimated




Using a Mixture Density Network

Log-scaled posterior
joint density function

Global maximum

m" = (p", ") = (1300 kg / m*, 1700 m / s)



Using Genetic Algorithm

The similarity of two signal is measured comparing
their associated HMMs through the Kullback-
Leibler Divergence

D(S1 [n],s2 [n]) = D(kl,kz)

Use GA as the optimization process and seek the model
parameters that generate a replica signal with the best

resemblance to a recorded one on the basis of the
similarities of their associated HMMs.

Using GA, we obtain a generation of possible solutions



Using Genetic Algorithm

The SWO06 experiment



Using Genetic Algorithm



Conclusions — Future Trends

Machine Learning can be proven a very efficient
companion of the methods applied in acoustical
oceanography for ocean acoustic tomography, sea-
bed classification.

This type of techniques are now implemented in
problems of monitoring the seismicity in Greek areas
by exploiting their ability to analyze big data on
earthquake occurrence and predict future trends on
seismic events and associated parameters.
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