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Noise-induced transitions in dynamical systems

@ Stochastically-driven dynamical systems appear in many fields, like
energy harvesting, laser technology, turbulence, oncology etc.
@ Environmental noises cannot be adequately described as

delta-correlated white noise since they exhibit finite correlation time:
colored i.e. correlated noise excitations.

@ Computational cost: We can always perform Monte Carlo
simulations, but they are computationally expensive, and also they are
not analytic tools.
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SDEs and the Fokker—Planck equation

Scalar stochastic differential equation (SDE) driven by potential V:
X(t) = =V'(X(1) + o(X(1)E(1),  X(t) = xo.
where &(t) is the noise excitation and o(x) is the noise intensity.

For £(t) Gaussian white noise, Ce(t1, t2) = 6(t1 — t2),
the classical Fokker—Planck equation is formulated

al’g; t_ ai { [V’(x) _ %a'(x)a(x)} p(x, t)} + ;aa; [0%(x)p(x, 1)] |

for the response probability density function (PDF) p(x, t).

o w = 0: It0 interpretation

@ w = 1: Stratonovich interpretation
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Fokker—Plank description for colored noise excitations

Can we formulate Fokker—Planck-like equations for SDEs under
Gaussian correlated (colored) excitations, i.e. where C¢(t1,t) is a
smooth function?

This was the topic of my PhD, where we derived PDF evolution equations
of drift-diffusion form:

(9pg;,t) :ng [V’(X) — ' (x)a(x)Aum(x, t; p)] p(x, t)} +
2
T 2 [0®(x)Am(x, t; p)p(x, t)] .

@ These evolution equations are approximate (range of validity).

e Term Ay depends on the unknown PDF p(x, t) via a particular
response moment: nonlinear Fokker—Planck equation.

@ For Ay = 1/2 we obtain the classical Fokker—Planck equation in the
Stratonovich interpretation.
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Nonlinear Fokker—Planck eq. for colored noise excitations

PC) 0 [y1(2) — o/ () Al 6 p)] plo )} +
2
+ % [UZ(X)A/\/I(X, t; p)p(x, t)] :
with
M .
anlxtip) =3 PP () R} M=00r2
m=0 )

D(t: p) = /t Ce(t, s) exp [/t R(u)du] (t— s)™ds.

V(%)
o(x)

/
0w =-at) (L) ) = ELc0)
e M = 0: Hanggi's equation
@ M = 2: our new equation (Mamis et al. 2019 Proc. R. Soc. A).
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First example of colored noise: Ornstein-Uhlenbeck process

Let us specify now the noise excitation in SDE:
X(t) = =V'(X(1) + o(X()°V (), X(to) = xo-

Colored noise £9Y(t) is the standard scalar Ornstein-Uhlenbeck Gaussian
process, with zero mean and autocorrelation function

1 t1 — ¢
Céou(tl, tr) = 2—exp <—|12‘> .
SCOI'

SCOI‘

Scor > 0 is the (finite) correlation time of OU noise.
Ornstein-Uhlenbeck noise is generated by the first-order, linear SDE:

£0U(t) = —SjorsOU(t) + sjng“(r).

For scor — 0 OU results in white noise.
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Stationary distribution

Nonlinear Fokker-Planck:

mé);ﬂ —88)( {[V’(X) - O'I(X)O'(X)AM(X, t; p)] p(X7 t)} +
2
+ 2 [0?(x)Am(x, t; p)p(x. t)] .

The closed form of stationary response PDF pg(x):

_Lex - XL
pO(X’R)_’a(X)\AM(X,R) p< /UQ(Y)AM(yaR)dy)

where R < 1/sco stationary value of R(t), [*dy denotes the
antiderivative, and C(R) is the normalization factor.

Note that this closed form is not a solution by itself for the stationary
nonlinear Fokker-Planck equation, since po(x, R) depends also on the still
undefined response moment R.
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Iteration scheme for R

By using the definition of the response moment R,

R= /R C(x)polx, R)dx,

and then substituting the closed form for py(x, R), we obtain the
self-consistency equation of the form:

Thus, moment R is calculated via the iterative scheme; R,11 = Z(R,),
n=0,1,... As seen in the following numerical examples, this iteration
scheme is rapidly convergent; for an error ;o) = 10™%, it converges after 4
iterations, on average.
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Our semi-analytic form for the stationary response PDF

Thus, by using our nonlinear Fokker—Planck equations, we have an

approximate, semi-analytic expression for the stationary response PDF of a
scalar SDE under colored noise excitation.

. _ <R Vi)
Por e ) = it 0 (| )

Rapidly-convergent iteration scheme for R: R = Z(R).

This result can be used to determine the stationary response PDF without
resorting to computationally expensive Monte Carlo simulations.
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Bistable additively excited benchmark case

First example: SDE with symmetric bistable potential with wells at 41
under additive OU excitation:

X(t) = =X3(t) + X(t) + o&(t).

Lyapunov time scale 0.5.
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oc=12 s, =0.25
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Compartmental Models of Epidemiology-SIS model

The SIS model is governed by the equations

dS A d/

A
D A Sy
dt ol b =l

with the susceptible (S) and infected (I) compartments, N is the total
population.
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Compartmental Models of Epidemiology-SIS model

Constant population assumption and state variable X = //N € [0, 1]:

% COAX(1 = X) — X
Basic reproduction number Ry = \/~. Two equilibria: 0, (A —7)/A.
e for Ry < 1, equilibrium point 0 is stable (disease dies out)
e for Ry > 1, equilibrium point 0 is unstable and (A —7)/\ is stable.
(endemic disease)
Lyapunov time scale (A —v)~L.
We assume that the curing rate -y is a deterministic constant and the
contact rate A(t) = A + o§(t) is a stochastic process.

ax

5= AX(1—X) — X + o X(1— X)(t)
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Stochastic SIS model, £(t) is white noise

Stationary solution to the classical Fokker-Planck equation:

2( *1) 2 2(1 Ry 1) oR-1 1
TN T ) Ay e _cho
po(x) = Nx (1) oo (~Cm T )

= 0: Ito solution, @ = 1: Stratonovich solution.
@ Basic reproduction number Ry of the underlying deterministic model.

o Relative noise level 02/ ).
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Stochastic SIS model, £(t) is white noise

Bifurcation diagram for SIS model under white noise

It stationary solution Stratonovich stationary solution
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I: Unimodal with mode at a non-zero X. Il: Bimodal with one mode at
X = 0. HI: Unimodal with mode at X = 0. IV: Delta function at X = 0.
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Stochastic SIS model, £(t) is white noise

1< Ry<15

Stationary response PDFs for SIS model under white noise

1td solution Ry = 1.4 Stratonovich solution Ry = 1.4
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Stochastic SIS model, £(t) is white noise

1< Ry<?2

Stationary response PDFs for SIS model under white noise

1td solution Ry = 1.7

C ——a%/A=0.01
2/ —
140 foz/gfo.m |
——0%/A =030
——0%/A=0425
12 2/ =0.70 []
——0%/A=0.90
10 1
S o8
IS8
6
4k
26 Reos
] S
0 0.6 0.8

Konstantinos Mamis (NCSU)

Stratonovich solution Ry = 1.7
D

Systems driven by colored noise July 6, 2022

17 /27



Stochastic SIS model, £(t) is white noise

Ry > 2

Stationary response PDFs for SIS model under white noise

1t6 solution Ry = 2.2 Stratonovich solution Ry = 2.2

—— 2/ =0.01 F
——a%/A=0.10
——a*/A=0.30
——a%/A =050

*/X=0.70
——a%/A =100
——0a?/A=120
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Stochastic SIS model, £(t) is Ornstein-Uhlenbeck noise

In the case of stochastic SIS model, the stationary value of the response
moment that makes our evolution equation a nonlinear Fokker-Planck is

calculated analytically.
The stationary PDF is expressed in analytic form, and depends on three

dimensionless parameters:
@ Basic reproduction number Ry of the underlying deterministic model.

e Relative noise level o2/ ).

@ Relative correlation time of OU noise a = 7(A — )

/27
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Stochastic SIS model, £(t) is Ornstein-Uhlenbeck noise

Bifurcation diagram for SIS model under Ornstein-Uhlenbeck noise

white noise a =0 a=0.1
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Stochastic SIS model, £(t) is Ornstein-Uhlenbeck noise

Bifurcation diagram for SIS model under Ornstein-Uhlenbeck noise
a=0.2 a=0.5
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Stochastic SIS model, £(t) is Ornstein-Uhlenbeck noise

Bifurcation diagram for SIS model under Ornstein-Uhlenbeck noise
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Correlated noise reduces the shift towards zero

Ry=14
White noise (Stratonovich solution) Ornstein-Uhlenbeck noise a = 0.5
£
Ry=17
White noise (Stratonovich solution) Ornstein-Uhlenbeck noise a = 0.5
£
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Stochastic SEIR model for COVID-19 pandemic

| model

B. US data (Johns Hopkins database)

C. Fitting deterministic SEIR model to data
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Stochastic SEIR model for COVID-19 pandemic

White noise perturbation of contact rate Ornstein-Uhlenbeck perturbation of contact rate

- B
— — deterministic
—0o =01
— o =02\
—— 0 =04\
——0 =05X
—— o0 = 0.6\

Distribution

Asymptotic cumulative COVID cases Asymptotic cumulative COVID cases

Ornstein-Uhlenbeck correlation time: 1 week.
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@ New, approximate yet accurate nonlinear Fokker-Planck equation for
SDEs under correlated noise.

@ The effect of noise at dynamical systems is non-trivial, and exhibit
richer behavior that undrlying deterministic problems.

@ There are phenomena that arise only for correlated noise excitations.

@ The response to correlated noise can be very different than the
response to white noise: temporal correlations matter.
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Thank you for your attention!
Questions?
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