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 Starting point of the variational study of rotational flows is the 
pioneering work of (Clebsch 1857; 1859). Especially in the 
latter work, he:  
 

 Showed that the velocity field may be expressed via the  
-now celebrated- Clebsch potentials (or variables) as  
 

m = ∇ + ∇u   
  

 Recast the incompressible Euler equations in terms of the 
new variables  , m,    
 

 Provided an unconstrained variational principle for the new 
equations, with the pressure as the Lagrangian density  

 

 Despite its significance for modern applications, his work was 
not recognized until decades later [(Grimberg and Tassi 2021)] 
 
 

English translations were not available until August 2021!  
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 It was 70 years later, when (Bateman 1929; 1944) extended 
Clebsch’s approach to compressible flows  

 

 Since then, several authors have been involved with the 
advantages and the limitations of Clebsch potentials  
 

[see e.g. (Eckart 1960), (Bretherton 1970), (Graham and Henyey 2000),  
(Wu, Ma, and Zhou 2006), (Kambe 2009), (Yoshida 2009), (Feldmeier 2020)]  

 

 Also, Clebsch potentials have been used in numerous 
applications of various fields  
 

[see e.g. references in (Grimberg and Tassi 2021)]  
 

 However, as far as nontrivial boundary conditions go, we were 
only able to find:  
 the suggestion of (Luke 1967), regarding the extension of the 

Clebsch-Bateman principle to free-surface flows, and  
 the very recent implementation of it by (Timokha 2015), for 

the problem of wave sloshing  



Literature review: using Hamilton’s principle 
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 In another line of work, the emphasis is on the transition:  
 

Lagrangian description

Variational principle in  Variational principle in

Eulerian description

    →    
 

 

In the Lagrangian description, the variational formulation is a 
straightforward extension of Hamilton’s principle  

 

 In this direction, the primitive (energy) functional is:  
 

 rewritten in Eulerian variables  
 

 augmented with appropriate constraints 
(nature of the system, equivalence with Lagrangian counterpart)  

 

 (Herivel 1955) made an initial attempt, imposing the constraints
of the mass and entropy conservations:  

 

 Clebsch-like representation of the velocity field  
 

 Issue: necessarily irrotational flow for constant entropy  
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 The issue was fixed by (Lin 1963), who noticed that, for an 
equivalent Eulerian principle, the variations must be carried 
out following the fluid motion [see, also, (Serrin 1959)]:  

 

Lin’s conservation of identity (or constraint)  
 

   
( , )

0, : parcel labels 
D t

Dt
=

a x
a  

 

 Extended or “classic” Clebsch representation, depending on the chosen 
number of conserved label components!  

 

 Lin’s constraint has been justified and/or used by many authors 
[e.g. (Seliger and Whitham 1968), (Bretherton 1970), (Van Saarloos 1981), 
(Bampi and Morro 1984), (Salmon 1988), (Fukagawa and Fujitani 2010)]  

 

 Though, boundary conditions seem to be overlooked in 
this direction, as well!  
 The Eulerian free-surface flow is treated by (Berdichevsky 

2009), but kinematic conditions are a priori imposed  

additional constraint 
in the action functional 



Problem description & notation
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 Ideal barotropic fluid with free surface, over moving seabed  
[density ( , , )z t x , internal energy ( )E  ]  
 

 Subject to applied pressure ( , )p p t= x  and conservative 
body (gravitational) forces given by potential ( , )P P z= x   
 

 The (vertical) lateral boundary, V∂ , consists of two types:  
 wV∂ : fixed rigid wall  
 

eV∂ : entrance (open) boundary  
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Action functional of  the problem 
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Are the integral constraints enough ?
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 Within the fluid domain, we may consider independent   , 
 a  &  u, due to the mass and identity integral constraints  

 

 The situation is different on the boundary:  
 

 No a priori reason to believe that such constraints, acting on 
the interior of the 3D fluid domain, work equally well on the 
lower-dimension boundary surface  
 

 In fact, if the variational procedure in the Eulerian formalism 
is attempted without additional constraints on   ,  a  &  u 
on the boundary, implied by the Lagrangian nature of the 
boundary parcels, the derivation of any dynamic boundary 
condition is impossible (disintegration in separate parts)  
 

 On the free surface, the additional   occurs, whose relation 
with the rest of the variations should also be considered  



Introducing a Lagrangian concept: virtual displacements
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To overcome the issues on the boundary, we seek the relation 
between:  

- the Eulerian variations (  ,  a ,  u,  ), and  

- the virtual displacements of the fluid parcels, 
L

 X , which 

are the natural variations of the system from the 
viewpoint of Analytical Dynamics  

 

For any Eulerian field of the flow, it may be shown that  
 

( ) ( ) ( ) ( )
L L

  = − ⋅∇Xi i i        (1)  
 

where:  
 

   - ( )
L

 i  is the Lagrangian variational operator, and  

   - ( )( , , ) ,
LL

z t t = X a xX  is the Eulerian representation of  

      the virtual displacements  
 

(Gelfand and Fomin 1963; Bretherton 1970; Mottaghi, et al. 2019) 



Differential-variational constraints, in terms of   
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Given that [(Bretherton 1970)]:  
 

( )
L L
   = − ∇ ⋅ X ,     0

L
 =a ,     ( )/

L L
D Dt =u X , 

 

Eq. (1) yields the differential-variational constraints:  
 

( )

( )

( ) ( )

L

L

L L

D

Dt

   

 

  

= − ∇⋅

= − ⋅ ∇

= − ⋅ ∇

X

a X a

u X X u

          (2a,b,c)  

 

 Point-wise conditions, applicable to any fluid parcel  
 

 If used in the interior of the fluid domain, they render the integral 
constraints redundant and lead to the standard Euler equation  

[“hybrid” approach of (Bretherton 1970)]
 

 On the boundary, they should be combined with any additional 
constraints on 

L
 X , implied by the boundary motion/dynamics  

L X



Virtual displacements on the boundaries 
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Free surface  

 Arbitrary variations 
L 

 X  of the free-surface parcels  

 If ( , ) 0S z t ≡ − =x  is the geometric representation of the free 

surface, then Eq. (1) leads to ( 0
L
S = ):  

 

  L    = ⋅X N ,  
1 2

( , , 1)
x x
 = − ∂ − ∂N   

 

Seabed  

 Variations 
L h
 X  of the seabed parcels, for which:  

 

   0
L h h
 ⋅ =X N ,   

1 2
( , , 1)

h x x
h h= − ∂ − ∂ −N   

 

Lateral boundary  

 Entrance boundary. Arbitrary variations latL
 X   

(allowing for the matching of the dynamics of the two flows)
 

 Rigid wall. Variations latL
 X , for which:  

0lat latL
 ⋅ =X n ,  latn  unit normal vector  



Back to        steps of  the variational procedure
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:Sɶ

Based on the above remarks, the variational equation 0 =Sɶ  
(for the augmented action functional) is treated as follows:  
 

Step 1: Calculation of the partial Gateaux derivatives  
 

[ , , , , , ; ], { , , , , , }q k q q k     ∈a A u a A uSɶ  
 

Step 2: Consideration of variations that vanish on the boundaries 
and derivation of the Euler-Lagrange equations corresponding to  
 

( ) 0

D h

q d z d dt





 −

=∫ ∫ ∫ x⋯ ,  { , , , , }q k∈ a A u  

[ q  independent inside V , due to the mass/identity constraints]
 

Step 3: Expression of the boundary remainder of 0 =Sɶ  in 
terms of L  X , L h X  and latL X , via the differential-variational 

constraints  



What was the motivation ?
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Flashback to an early attempt  
 
 

 The kinematic conditions are correctly derived, but repetitively, 
for different “independent” variations  

 

 The dynamic free-surface condition cannot be derived, unless 
one recognizes that at least   & zu  =  depend on each other 

via the respective differential-variational constraints  
 

 The dynamic conditions on the entrance boundary cannot be 
derived without all the differential-variational constraints  

 

This redundancy and insufficiency led to the introduction of 
the differential-variational constraints and to Step 3! 

independent
Eulerian variations
on the boundary



Variations in the interior of      Euler-Lagrange equations 
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:V

Conservations of mass & identity  
 

: ( ) 0
t

k



∂
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∂

u ,  : 0
D

Dt
 =

a
A  

 

Conservation of Lagrange multipliers 
1 2 3

( , , )A A A=A   
 

: 0
D

Dt
 =

A
a   

 

Evolution of Lagrange multiplier k   (pressure-related)  
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∂
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∂
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Extended Clebsch representation for the velocity field  
 

: k = − ∇ + ∇uu A a   



Remainder of  the variational equation on the boundary
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After treating the volume terms, the variational equation reduces 

to a boundary variational equation, of the form 0b =Sɶ :  
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Invoking the differential-variational constraints 
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- The variations   , a  and u, in the boundary remainder, are 
substituted with the differential-variational constraints of Eqs. (2) 
 

- Also, it can be easily verified that 
L   = ⋅X N   

 

Thus, the variational boundary remainder is  
rewritten in terms of 

L 
 X , 

L h
 X  and latL

 X  
 

Attention should be paid to the form of Eqs. (2) on the boundary, 
due to the nature of the Eulerian representations 

L b
 X :  

 

E.g. 
L 

 X  is independent of z  and, consequently,  
 

[ ] [ ] [ ] ( )2 ,1 , 2
( , )

LL Lz z z
X X

    
      

= = =
= − ∇ ⋅ − ∇ ⋅X , 

 

[ ] [ ]
Lz z  

 
= =

= − ∇ ⋅a a X , 
 

      [ ] [ ]2 dim
( ) ( )

L Lz z

D

D t t



     
  

= =

− ∂
= − + ∇

∂

    
N
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Normal and tangential components of  
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L b X

In the boundary variational equation, some terms are accompa-
nied by 

L b
 X , and others by the normal components 

L b b
 X N . 

Thus, to facilitate the analysis, we express 
L b

 X  as:  
 

, ,
{ , , }, lat

L b L b L b
b h   ⊥= + ∈X X X

	  

where:  

 
2

{ , }

{ , }, }

{ , }

{ , ,L h

h

h

h

B








 ⊥ ⊥=
N

X

N

,     
, ,lalat lattL

B  ⊥⊥ =X n   

 

 
, ,1 ,, 1 , 2 2L b bb b b

B B  = +X T T
	

, { , , }latb h∈   
 

,{1, 2}b
T : tangent vectors - local basis of boundary’s tangent plane 

(parametric representation of free surface/seabed & known 
lat
V∂  ) 

 
 

Independent variations 
, { ,1, 2}b

B ⊥  in the place of 
, {1, 2 , 3}bL X  

normal & tangential 
components 

 



Free-surface term: tangential variations

July 2022 17

Free surface  
 

Considering, first, tangential variations:  
 

,L  =X
	

 arbitrary,   
,

0
L  ⊥ =X , 

 

leads (after the required calculations) to the variational equation:  
 

    
, ,

( ) 0
i i

z
D

B d dt
t

k
 




 


=

− ∇ + ∇ =
∂

−
∂

        ∫ ∫ A a T xu N ,  

 
from which we obtain the free-surface kinematic condition: 
 

,
: 0

L

t
 




∂
− =

∂
X u N

	
,  z =   



Free-surface term: normal variations
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Considering, next, normal variations:  
 

,L 
 ⊥ =X  arbitrary,  

,
0

L 
 =X

	
,  

 

and using the derived kinematic condition, ultimately results in 
the variational equation:  
 

  
2

,
0

2
D z

D k D
p E P B d dt

D t D t




   



⊥

=

+ − + − − =
           

∫ ∫
a u

A x   

 

 
Accordingly, we obtain the free-surface dynamic condition:  
 

2

,
:

2
L

D k D p
E P

D t D t





⊥ − + − + + =
a u

X A ,  z =   



Free-surface dynamic condition: Clebsch form
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If we combine the free-surface boundary condition with the 
derived representation of the velocity, then the former becomes:  
 

2

2

k p
E P

t t 

∂ ∂
− + + + + =

∂ ∂

a u
A ,  z =   

 

(u  is understood as a symbol for  k−∇ + ∇A a )
 

 This expression is essentially the same as the Lagrangian density 
provided by (Clebsch 1859), with additional terms due to the 
inclusion of compressibility, conservative body forces and 
applied pressure  

 

 In Sec. 9.3 of (Berdichevsky 2009), the same relation is derived 
for incompressible fluid, but the arbitrary addition of the zero 
term ( / )D D tA a  is required to the initial dynamic condition of 
his variational procedure  



Seabed term & lateral boundary’s rigid wall
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Due to the nature of the seabed and the rigid wall, inducing the 
constraints 0lat latL h h L

 ⋅ = ⋅ =X N X n , the virtual displacements 

on them are only tangential:  
 

Moving seabed  
 

, ,
( ) 0

h i hh i

z h
D

tk
t

d
h

B d 


= −

∂
− − ∇ + =

∂
∇

        ∫ ∫ A a T xu N  

=⇒ impermeability condition: 0,
h

h
z h

t

∂
− = = −

∂
u N   

 

Rigid wall of the lateral boundary  

,
( ) ( ) 0

lalat t

w

L

D h

d z dl dtk



 

 ∂ −

− ∇ + ∇ =∫ ∫ ∫ A Xu n a
	

 

=⇒ impermeability condition: 0, ( , )
lat w

z V= ∈ ∂u n x   



Open-boundary conditions: tangential variations
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Open (entrance) boundary  
 

Since it is an open boundary, we consider both tangential and 
normal variations, lat ,L

 X
	
 and lat ,L

 ⊥X , which yield appropriate 

matching conditions between the internal flow and the known 
external one  
 

 For arbitrary tangential variations lat ,L
 X

	
, and after the 

required calculations, we obtain the condition:  
 

( )

,
( ) ( ) . .

eV
k B T

∂
− ∇ + ∇ =

u

u A an
	�������

ext

lat  , 

 

which constitutes the continuity of the momentum flux 
between the two parts of the flow  



Open-boundary conditions: normal variations
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 For normal variations lat ,L
 ⊥X , using again standard algebraic 

manipulations, we derive the condition  
 

  
( )

,
( ) ( ) ( . ./ )

ext

lat lat

pressure-related termnormal component of momentum flux

Ve
k B TDk Dt 

∂ ⊥
− ∇ + ∇ + =A au n n

����������������
,  

 

which is interpreted as the continuity of the pressure between 
the two flows  

 

 From terms on the line boundary of the entrance-boundary 
surface (boundary of co-dimension 2), we also obtain the 
matching of the velocity and gradient of the geometrical free 
surface and seabed  

 

These open-boundary conditions appear for the first time, 
and, in retrospect, they seem very natural!  



Where to, next?
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 Despite the positive results, this is a very complicated and 
“inconvenient” variational principle, requiring several new 
concepts and lemmata in the process  

 

 However, it also is a variational principle constructed on solid 
“physical ground”, capable of producing the full equations of 
motion, along with the complete set of required boundary 
and matching conditions  

 

 Thus, it equips us with all we need to implement our next 
goal/step, which is the construction of an:  
 

unconstrained action functional w.r.t. the velocity potentials 
(a priori velocity representation), with independent arguments 
whose variations lead to a similar complete set of equations   
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