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The Coupled-Mode approach



The Coupled-Mode approach

A semi-analytical method to solve waveguide problems

Solve P:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

DU = F, in Ωη
h

BηU = f, on Γη

BhU = g, on Γh

,
D diff.operator

Bη,Bh boundary operators

Strategy

• Construct a representation Umod
(x, z, t) = ∑

n
Un(x, t)Zn(z;x, t) in Ωη

h
, associated with a

vertical Sturm-Liouville problem (reference waveguide) in [−h(x), η(x)]

• Derive equations on Un(x, t)

• Solve them numerically
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Internal Tides



Internal tides in the ocean

First observation Nansen (1893), Petterson (1908) and experiments (Ekman, 1904, Zeilon 1912, 1934)

Baines PG. 1973. The generation of internal tides by flat-bump topography. Deep-Sea Res.

Bell TH. 1975a. Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech.

Bell TH. 1975b. Topographically generated internal waves in the open ocean. J. Geophys. Res.
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Physical Assumptions and approximations

linearized, inviscid Boussinesq equations

• The fluid is ideal and stratified
1

a0

& linearization
1

a0

& f -plane approx.
1

a0

• Quasi-incompressibility

• Approx. energy equation

• The free surface is as a rigid lid

• The bottom surface is impermeable

• Background barotropic tidal flow

• Background state (p0(z), ρ0(z))

Further approximations allow analytical treatment (e.g. Fourier methods):

Weak Topography Approximation (WTA): Nh ⋅ (u,w) = 0 on z = −h0

Horizontally Uniform tidal flow: (U,W ) = (U0 cosωt,0), U0 = cst
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Governing Equations ● Stream function formulation

Introduce the buoyancy b = −g
ρ−ρ0
ρ0

and the Brünt-Vaisällä frequency N , N2
= −g

ρ0,z
ρ0

ut − fv = −px,

vt + fu = 0,

wt = −pz + b,

bt +N
2w = 0,

ux +wz = 0,

Nh ⋅ (u,w)∣−h = 0,

w∣0 = 0.

∫

0

−h
udz = Q cosωt

ψ(x, z, t) = R{ϕ(x, z)e−iωt
} st ψ∣−h = Q cosωt

Lµϕ ≡ (
∂2

∂x2
−

1

µ2

∂2

∂z2
)ϕ = 0,

ϕ∣0 = 0, ϕ∣−h = Q.

µ =

√
N2 − ω2

ω2 − f2
> 0, Q flow rate amplit.

Q = 120 m2 s−1 corresponding e.g. to a barotropic velocity amplitude at x→ −∞ of

U0 = Q/h0 = 4 cm s−1 (resp. U0 = 4.46 cm s−1) and a depth h0 = 3 km.

ω = 1.4 × 10−4 s−1, f = 10−4 s−1 is the value around latitude 45○N, N = 1.5 × 10−3 s−1,

meaning that µ ≈ 15.2)
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The internal tide generation problem

• The total flow is written ϕ = Φ(0)
±

hydrostatic

+ ΦNH

±
non-hydrostatic

+ ϕ#
= Φ(0)
±

hydrostatic

+ ΦNH
+ ϕ#

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕ†

Lµϕ
†
= −Lµ (−Q

z

h(x)
)

ϕ†
(x,0) = 0

ϕ†
(x,−h) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

P

& radiations conditions

ϕ†
∼ e±ik

±

nx sin(κ±nz), as x→ ±∞

κ±n =
nπ
−h±

, k±n =
κ±n
µ

• For general seamount and shelf topography, this problem has not been solved.

Maas obtained special non-radiating solutions.

• Energy equation

[∫

0

−h
⟨p†u†

⟩dz]
+∞

−∞

= (1 −
ω2

N2
)∫

Ω
⟨W (0)b†⟩dΩ.

Baines PG. 1973. The generation of internal tides by flat-bump topography. Deep-Sea Res.

Garett & Gerkema 2006. On the Body-Force Term in Internal-Tide Generation. J. Phys. Oceanogr.

Maas 2011, Topographies lacking tidal conversion, J. Fluid Mech.

Ch. P et al. Internal tide generation from isolated seamounts and continental shelves (arxiv)
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Normal mode decomposition

• The solution ϕ† is written in the form

ϕ†
(x, z) =

∞

∑
n=1

ϕn(x)Zn(z;h(x))

where the vertical functions Zn are defined by the SL problem

Zn,zz + κ̃
2
nZn = 0, −h(x) < z < 0,

Zn = 0, z = 0

Zn = 0, z = −h(x),

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

→ (κ̃n, Zn) = (
nπ

−h
, sin (κ̃nz))

and the unknown modal amplitudes ϕn are defined by

ϕn =
2

−h ∫
0

−h
ϕ†Zndz.

• It can be shown that if ϕ† is sufficiently smooth, then ϕn = O(n
−3
), ϕn,x = O(n

−3
),

and ϕn,xx = O(n
−3
).

• Through a Galerkin-type procedure, we derive equations on ϕn.

8/26



Normal mode decomposition

• The solution ϕ† is written in the form

ϕ†
(x, z) =

∞

∑
n=1

ϕn(x)Zn(z;h(x))

where the vertical functions Zn are defined by the SL problem

Zn,zz + κ̃
2
nZn = 0, −h(x) < z < 0,

Zn = 0, z = 0

Zn = 0, z = −h(x),

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

→ (κ̃n, Zn) = (
nπ

−h
, sin (κ̃nz))

and the unknown modal amplitudes ϕn are defined by

ϕn =
2

−h ∫
0

−h
ϕ†Zndz.

• It can be shown that if ϕ† is sufficiently smooth, then ϕn = O(n
−3
), ϕn,x = O(n

−3
),

and ϕn,xx = O(n
−3
).

• Through a Galerkin-type procedure, we derive equations on ϕn.

8/26



Normal mode decomposition

• The solution ϕ† is written in the form

ϕ†
(x, z) =

∞

∑
n=1

ϕn(x)Zn(z;h(x))

where the vertical functions Zn are defined by the SL problem

Zn,zz + κ̃
2
nZn = 0, −h(x) < z < 0,

Zn = 0, z = 0

Zn = 0, z = −h(x),

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

→ (κ̃n, Zn) = (
nπ

−h
, sin (κ̃nz))

and the unknown modal amplitudes ϕn are defined by

ϕn =
2

−h ∫
0

−h
ϕ†Zndz.

• It can be shown that if ϕ† is sufficiently smooth, then ϕn = O(n
−3
), ϕn,x = O(n

−3
),

and ϕn,xx = O(n
−3
).

• Through a Galerkin-type procedure, we derive equations on ϕn.

8/26



The Coupled-Mode System for internal tides

ϕm,xx +
κ̃2
m

µ2
ϕm +

∞

∑
n=1

bmnhx

h
ϕn,x + (

cmnh
2
x

h2
+
dmnhxx

h
)ϕn = Q

2(−1)m

mπ
h(

1

h
)
xx

, m ≥ 1,

ϕm,x ± ik
±

mϕm = 0, as x→ ±∞.

Energy conversion rate

C± = ρ
0

N2
− ω2

2ω ∫

0

−h±

I{ϕ†ϕ†
x}dz,

Baroclinic velocities

u#
= −R{(ϕ†

−ΦNH
)
z
e−iωt

}, w#
= R{(ϕ†

−ΦNH
)
x
e−iωt

}

Weak topography approximation: δ = max{h}

h0
≪ 1, ε = µmax{∣hx∣}≪ 1

C
WTA
=
F0

h2
0

∞

∑
n=1

λnr̂(λn)r̂(λn)ϵλ, F0 =
ρ
0

2π

[(N2
− ω2
)(ω2

− f2
)]

1/2

ω
U2h2

0,

where λn = nπ/(µh0), ϵλ = λn/n = π/(µh0) and r̂(ξ) = ∫
+∞

−∞
exp(−ixξ)r(s)ds.

Llewellyn Smith & Young 2002, Conversion of the barotropic tide, J. Phys. Oceanogr.

St. Laurent et al. 2003, The generation of internal tides at abrupt topography, Deep Sea Res.

Ch. P et al. Internal tide generation from isolated seamounts and continental shelves (under revision)
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Considered topographies

hW =
hr

1 + x2

L2

, hG = hr exp(−
x2

2L2
) , hB = hr exp

⎛

⎝
−

1

1 − x2

L2

+ 1
⎞

⎠
1(−L,L),

Parameters: ε = µmax{∣hx∣} and δ =
max{h}

h0
.
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Results ● Energy conversion rate

• Our calculations converge to WTA predictions as δ → 0

• (Gaussian) Error exceeds 20% for δ ≈ 0.12 (ε = 0.1), δ ≈ 0.4 (ε = 0.5), δ ≈ 0.3 (ε = 1)

• WTA does not predict non-radiating topographies in the subcritical regime

Llewellyn Smith & Young 2002, Conversion of the barotropic tide, J. Phys. Oceanogr.

St. Laurent et al. 2003, The generation of internal tides at abrupt topography, Deep Sea Res.

Maas 2011, Topographies lacking tidal conversion, J. Fluid Mech.
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Results ● Gaussian seamount
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Water Waves



Physical Assumptions

• The fluid is ideal and homogeneous

• The fluid is incompressible

• The flow is irrotational

• The free surface is impermeable

• The bottom surface is impermeable

• No surf. tension

Luke’s Variational Principle

S [η,Φ] = ∫ ∫
X
∫

η

−h
[∂tΦ +

1

2
(∇Φ)2 + gz]dzdxdt.

Hamiltonian formulation on (η,ψ ∶= Φ(x, η, t)) and ψ → G[η, h]ψ ∶= Nη ⋅ [∇Φ]z=η

∂tη = G[η, h]ψ

∂tψ = −
1

2
∣∇xψ∣

2
+
(G[η, h]ψ +∇xψ ⋅ ∇xη)

2

2 (1 + ∣∇xη∣2)
− gη

(DtN)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∆Φ = 0

Nh⋅ [∇Φ]z=−h = 0

[Φ]z=η = ψ

Luke 1967, A variational principle for a fluid with a free surface, J. Fluid Mech.

Zakharov 1968, Stability of periodic waves on the surface..., J. Appl. Mech. Tech. Phys.

Craig & Sulem 1993, Numerical simulation of gravity waves, J. Comp. Phys.
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Consistent Coupled-Mode Theory

• Φ(x, z, t) = φ−2(x, t)Z−2(z;η, h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Free Surface Mode

+φ−1(x, t)Z−1(z;η, h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sloping Bottom Mode

+
∞

∑
n=0

φn(x, t)Zn(z;η, h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Standard Modal Expansion

,

φ−1 = [∂zΦ]−h , Z−1 ∶

⎧⎪⎪
⎨
⎪⎪⎩

[∂zZ−1]η − µ0 [Z−1]η = 0

[∂zZ−1]−h = 1

φ−2 = [∂zΦ − µ0Φ]η , Z−2 ∶

⎧⎪⎪
⎨
⎪⎪⎩

[∂zZ−2]η − µ0 [Z−2]η = 1

[∂zZ−2]−h = 0

φn = ∫

η

−h
(Φ − φ−1Z−1 − φ−2Z−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ∗

Zndz, Zn ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂zzZn + k
2
nZn = 0

[∂zZn]η − µ0 [Zn]η = 0

[∂zZn]−h = 0

µ0 − k0 tanh(k0(η + h)) = 0

µ0 + kn tan(kn(η + h)) = 0

• O(n−4) decay and term-wise differentiability for any µ0 (provided that Φ(x, ⋅) and

its derivatives are H6
(−h(x), η(x, t))) and η, h ∈ C2➥ Exact series expansion

Massel 1993, Coast. Eng., Porter & Staziker 1995, J. Fluid Mech.
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Consistent Coupled-Mode Theory
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Free Surface Mode

+φ−1(x, t)Z−1(z;η, h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sloping Bottom Mode

+
∞

∑
n=0

φn(x, t)Zn(z;η, h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Standard Modal Expansion

,

φ−1 = [∂zΦ]−h , Z−1 ∶

⎧⎪⎪
⎨
⎪⎪⎩

[∂zZ−1]η − µ0 [Z−1]η = 0

[∂zZ−1]−h = 1

φ−2 = [∂zΦ − µ0Φ]η , Z−2 ∶

⎧⎪⎪
⎨
⎪⎪⎩

[∂zZ−2]η − µ0 [Z−2]η = 1

[∂zZ−2]−h = 0

φn = ∫

η

−h
(Φ − φ−1Z−1 − φ−2Z−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ∗

Zndz, Zn ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Variational derivation of model equations

• extremize Luke’s functional S for functions of the form Φ = ∑n φnZn(z;η, h) ≡ ϕϕϕZZZ

• Composition rule S̃[η,ϕϕϕ] = S[η,ϕϕϕZZZ] = S ○ (η,ϕϕϕZZZ)

δφm ∶ 0 =(∂tη −Nη ⋅ [∇(ϕϕϕZZZ)]η ) [Zm]η +∑
n

Lmn[η, h]φn, for all m

δη ∶ 0 =[∂t(ϕϕϕZZZ)]η + gη +
1

2
[∇(ϕϕϕZZZ)]

2

η
−∑

m

(∑
n

lmn[η, h]φn)φm

+ ( − ∂tη +Nη ⋅ [∇(ϕϕϕZZZ)]η)(ϕϕϕ [∂ηZZZ]η )

where

∑
n

Lmn(η, h)φn = ∫

η

−h
∆(ϕϕϕZZZ)Zmdz −Nh ⋅ [∇(ϕϕϕZZZ)]−h [Zm]−h

∑
n

lmn(η, h)φn = ∫

η

−h
∆(ϕϕϕZZZ)∂ηZmdz −Nh ⋅ [∇(ϕϕϕZZZ)]−h [∂ηZm]−h

• If ZZZ are polynomials (from asymptotic expansions of Φ) ➠ high-order shallow

approximations (Isobe-Kakinuma models and others)

• Exact modal representation ➠ Exact modal reformulation on (η,ϕϕϕ)

Ch. P et. al 2019, Implementation of a fully nonlinear Hamiltonian Coupled-Mode Theory, and application

to solitary wave problems over bathymetry. Eur. J. Mech. B Fluids
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Variational derivation of the HCMS (Sketch)

∂tη −Nη ⋅ [∇(ϕϕϕZZZ)]η +
∞

∑
n=−2

Lmn[η, h]φn = 0, for all m = −2, . . . ,∞

Ú
Ú
Ù

∂tη −Nη ⋅ [∇(ϕϕϕZZZ)]η +
∞

∑
n=−2

Lm∗n[η, h]φn = 0,

∞

∑
n=−2

Lmn[η, h]φn −
∞

∑
n=−2

Lm∗n[η, h]φn = 0 for all m = −2, . . . ,∞

Ú
Ú
Ù

∂tη −Nη ⋅ [∇(ϕϕϕZZZ)]η =∆(ϕϕϕZZZ) = Nh ⋅ [∇(ϕϕϕZZZ)]−h = 0

Ú
Ú
Ù

∞

∑
n=−2

Lmn[η, h]φn = 0,
∞

∑
n=−2

lmn[η, h]φn = 0 for all m = −2, . . . ,∞
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The Hamiltonian Coupled Mode System (HCMS)

• Introducing ψ = ∑
∞

n=−2 φn, the water wave problem takes the form

∂tη = −∇xη ⋅ ∇xψ + ((∇xη)
2
+ 1)(h−10 F−2[η, h]ψ + µ0ψ),

∂tψ = −gη −
1

2
(∇xψ)

2
+
1

2
((∇xη)

2
+ 1)(h−10 F−2[η, h]ψ + µ0ψ)

2
,

where F−2[η, h]ψ ∶= φ−2 is determined by solving a substrate

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∞

∑
n=−2

(Amn∆x +Bmn ⋅ ∇x +Cmn)φn = 0, m ≥ −2, x ∈X,

∞

∑
n=−2

φn = ψ, x ∈X.

• DtN operator:

G[η, h]ψ = −∇xη ⋅ ∇xψ + ((∇xη)
2
+ 1)(h−10 F−2[η, h]ψ + µ0ψ)
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HCMS ● Linear Dispersion

CWW
√
gh0

= (
tanh(κh0)

κh0
)

1/2
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Validations

• L2-Error for the DtN operator ∝ N−13/2, L2-Error for Φ (flat bottom) ∝ N−7/2

• Steady Travelling Water Waves (λ/h0 = 0.5 − 28 up to breaking)

• Harmonic generation (mild and strong bottom slope)

• Bragg reflection (sinusoidal bottom)

• Collision, reflection and shoaling of solitary waves

• Generation of solitary waves by abrupt bottom movement (tsunamis)

• 3D regular waves over an ellipsoidal bump and semicircular shoal

• Extreme waves over flat and variable depth (nonlinear wavegroups)

• Solitary waves over undulating bathymetry, abrupt deepenings and trenches
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Harmonic Generation

22/26



Harmonic Generation
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Solitary Waves

Ch. P et. al. 2018, Implementation of a fully nonlinear HCMT, and application to solitary wave problems

over bathymetry, Eur. J. Mech. B Fluids
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Semi-circular shoal

Video
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Semi-circular shoal
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