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Ayarnté Makn,

Aumtapat oAU mou oofapol meploplopol pe epmodilouv va
CUUMETACKW OToV afloo€BaOTO €0pTOCUO ylo TN ouvtaglodotnon
oou. e kaBe mepiMTwON, HE AUTAV TNV €mLoToAn Ba nbsAa va
EKPPACW TOV PEYAAO HOU OEBACHO yld TIC CUVELODOPEC GOU WG
edpappoopévog avaAutng pe Eudaon o Bépata aBePfatdotnTag Kal
HN YPOUULKOTNTAG.

Oa nBela emniong va PoLpOOTW TN CUUMABELA KOl TNV EKTiUNON yla
TNV MVEUHATWON TTPOCWTILKOTNTA COU KoL TNV OALOTIKN pLlocodia
oou w¢ AavBpwmog. OfAw va Toviow  LSLUTEPWC TG
HOKPOXPOVIEG/TIEPUTAOKEG ETMLOTNUOVIKEC OUINTAOELC TIOU ElXAUE
OXETIKA HE TI EMIOTNMOVIKEG EVVOLEG KAl TNV omodACLOTIKN
O€0ELCN OOV yLa TNV OUCLOOTLIKOTNTA EVOVTL TOU EVTUNWOLOOUOU
OTNV EMLOTHN KAl TO engineering.

Jou eUyopol oAOuxa TO KOAUTEPO yla O,TL amodacicel va
okoAouBnoelg petd t ouvtaélodotnaor cou. Inuelwaoe OtL N opada
pou oto Mavemntotiuto Rice Ba eivat povipa éva dphogevo Alpavt yla
TO ETLOTNUOVIKA oou Tagidla kot SladpopEd.
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Some memories

2002... Zovaptnolakr) avaAoon e epappoyEeg OTNV EMOTLHL] TOL PIXAVIKOD
ZTOYAOTIKI] povielormoinon Kat mpoPAewn Oalaocoiov cootnpdtov

2005...

Hopf-type equation for the characteristic functional

Joint response-excitation equation



Waves, (Ships), and Probability

The goal hard
/

A link between: Geometry < Dynamics < Extreme Event Statistics

The challenge

This is a hard, but nevertheless, solved problem if the involved processes are Gaussian
or the dynamics are linear.

This is an open problem if the dynamical system is nonlinear. For ship motions/loads

the underlying system is often non-linear and the response statistics non-Gaussian.
Extreme value properties of loads...

—> Spectrum-based irregular waves in naval architecture by St. Denis and Pierson (1953)

—> Weibull distribution typical for computing lifetime extreme wave-induced loads since 1960

—> Extreme value theory employed for calculation of wave-induced loads, Ochi and Wang (1976)



The plan

A) Exactly solvable reduced order models

Go beyond Gaussian statistics or Extreme Value PDFs...

i)  Design models which are complex enough to capture the observed non-Gaussian
features and simple enough to be analytically solvable.

ii) Interpret observed statistical complexity (from direct simulations) in terms of the hull
geometrical properties.

iii) Understand the limitations of these analytically solvable models.

B) Computational method using carefully designed wave-episodes

Extreme event statistics require huge number of samples

i) Random waves are associated with high dimensional spaces
ii) Formulate a rapidly converging representation using wave-episodes

iii) Express the ship response/loads through GPR.

iv) Careful modeling of transient features



Extreme event statistics for structural loads: Observations

Pdf for bending moment at mid-ship from direct numerical simulations

Light tail /Heavy tail

N

Gaussian tail

/ Gaussian tail -



Development of analytical model for VBM
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Gaussian white-noise approximation of the wave excitation
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Development of analytical model for VBM

Analytical solution of pitch pdf

C

ps(6,0) = Cexp ( 5T

. . (16* + Vus(0)))
104 cf + Mps(0) = DW }

Nonlinearity enters

Virs(6) = / Mi(6)do

through hydrostatics

Mzs(6) Pitch pdf



Development of analytical model for VBM
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Development of analytical model for VBM
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Development of analytical model for VBM

Utilize a monochromatic approximation for the waves:

h(z,t) = ac(t) cos (27T—x> +as(t) sin (%—x> Similar to Grim effective wave approach

L L
L)2 L2 "
f\[p]\'ng(g,t:C) = / I Ox (11 —|—Z/ IA(q I 91 (I ' C) 1; Q=2
-—L/z q=1"—-L/2 q:

Approximation of the VBM in terms of the wave amplitudes (from FK)

Mw —vem(ac,as) = pe(0)ac(t) + ps(0)as(t) + pe (0)aZ(t)
pe2 (0)a5 (1) + pes(0) s (t)ae(t).

_|_

L/2 £ )
pe(0) = / 2?A’(x,t%)cos(27%“’) dv, and p,(6) = / zA'(z,0z) sin (—Zx) dz
0 L 0 ’

L/2 9 L L )
pa®) =5 [ '@ 0)cos* (17 ) doy pa(®) =5 [ 2", 6)sin? (717 ) do.
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L/2
pes(0) = / xz A" (z,0z) cos (27‘-—:0) sin (2#—:’;) dz.
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Analytical approximation of the VBM (no deck) due to FK

Divergence for large

I positive moments

Tunable parameter: variance of the wave excitation

Sapsis et al., 3374 SNH, 2020
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Critical pitch angle due to deck submergence

Computation of the effective VBM for the case of deck submergence

L tan 04 k+l
1 2tan @ 0 A(g_f;, z)
Pcksl (9) = W ; X Bz"""l

2 2
L cos® (%x) sin’ (%x) dx, 6> 04

Wave induced VBM, when deck is submerged: R

Ocr =0
My _vem(0) = ttaned My _vBm(oe, as), 02> 6qg a d/q
an >
Critical angle is defined as the one for which 04 = 5.87 deg
Mw—vem(Ocr) = ¢gMw—vBm(ac, @) Yy Ocr = 13.5deg

0 < g <1 is a parameter
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How do we account for the finite deck?

1) Derive critical pitch beyond witch no additional VBM is contributing

2) Derive correlation between waves and pitch statistics.

3) Derive modified pdf for VBM with deck effects
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Correlation between waves and pitch

Need to condition on waves that result in subcritical pitch angles.

How to identify these waves?

Pitch statistics follow a
normal distribution =2

Develop a linear (Gaussian)
model

Linear model allows for

analytical characterization
of correlation structure
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Correlation between waves and pitch

Expanding Froude Krylov forces up to linear terms (Gaussian approximation):

L/2

My (8,4;¢) = / P 0)h(a )

We have the equation of motion for pitch...

16 + ¢ + kb = ac(t)xc(0) + as(t)xs(0)

L/2

L/2
Xc(0) = / zA'(z,0z) cos (%Tw) dr, and xs(0)=

zA'(z,0x)sin (27r_a:) dx
~L/2

_L)2 L

ONR
Topsides
Fared hull
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Correlation between waves and pitch

Averaging the hydrodynamic coefficients over 0 % Stochastic amplitudes

10 + ch + kb = ac(t)Xe + as(t)Xs
L o0 1 92
= ) ———=exp| ——= | db
x(6) /_oox( ) 3o p( 203)
(in our numerical example o= 2.4009)

Employ derived stochastic model with Wiener-Khinchin relations:

Seac (w) — Heac (w)Sacac (w) &nd Seas (w) — Heas (w)Sas As (w)’

with ‘\_ Wave
spectrum

Xec Xs
Hoo W) = Tt vicw 24 Moo ) = i
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Correlation between waves and pitch

In this way we obtain...

COa,c — i XCSO(w)dw — )_((:S

21 J_ oo kb — Tw? + icw

Cha. = 1 XsS0(w)dw .S

21 ) _ oo kb — Iw? 4+ icw

. 1 [oo So(w)dw
with 27 f—oo k—ITw?+icw

From moment equations we obtain
2 2
kog — Io ;

Xz + X3

S —
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Conditional wave statistics for deck submergence

The pdf for the wave amplitudes & = (a., ;) is assumed to be Gaussian

1 a? + o?
flag, ag) = exp (——)

2 2
2wos 20

Conditional pdf for the waves that cause pitch angles smaller than the critical one

Using Bayes rule we obtain

P(9 < Hcrlaaas)f(ac;as)

< —
f(amasw = ecr) P(H S Hcr)

where,

Ocr
PO < 0.r|ae,as) = f(0lae, as)db

A

Conditional pdf for pitch with given waves
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Conditional wave statistics for deck submergence

OC'I"
PO < 0.|ae, as) = f(0|lag, as)db
— 00
\ Gaussian
. %) Ceac —I— COaS
Conditional mean e, — 02 0% o2 Qg
2 2
Conditional covariance 2 _ 2 COac . C9as
09|ac,as = Oy 0__2 (‘72
(8 o
OCT 0 - éaC)aS
P(e S BCTIQC) O{S) — f(6|aca as)de ¢
— 00 UGIaC,as
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Conditional wave statistics for deck submergence

ocr - éac,as‘ f(ac: as)

Hcr - éac,as
P(9 < 9cr|a07as) = |: :| 09|ac,as P <0.)

flac,as|d < 0.) =@ [
00|ac,as
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Pdf for wave induced VBM with deck effects

Flt\ifgfk—VBM (M) = / f(ac,as|9 < Gcr)dacda& D(M) = {(amas) : MW—VBM(Olmas) < M}
D(M)
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Pdf for wave induced VBM with deck effects

Sapsis et al., 34th SNH, 2022
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Traditional computational methods for extreme event statistics
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Challenges - limitations
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The plan for the computational method
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JONSWAP Spectrum
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Karhunen Loéve Theorem

z(t)
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Selection of wave-episode length, T, and number of modes

Short T

Poor modeling of
transients/ memory

Large T

Slow convergence
of KL - high
dimensionality
parameter spaces
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Stochastic-prelude for finite-time wave-episodes

Stoch. Prelude  Wave Episode Equip each wave-episode with a stochastic
prelude that will bring the system close to the
stochastic attractor

Definition of SP

Probability measure for wave elevation

Plz(t),t € R]

Conditional probability measure for wave elevation

- .
) B i, 1= 1,...,n
A :I:(S)ei,T(S)dS = { 0,i=n+1,... }]

How do we construct numerically the SP for each wave-episode?

Plz(t),t € Rlag,...,an] =P [x(t),t eR

Iteratively, llSiI'lg Using n points in the wave-episode We sample and then find the
GP diti . region we find the conditional conditional pdf for the next point
con 1t10mn8 distribution for the first point of of the SP and repeat
the SP
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Statistical structure of the Stochastic Prelude

a—conditional mean of each wavegroup:
z(tla) =E[z(t)|a], teR.
Z(tla) =0, fort <0 or t>T

a—conditional variance or stochastic prelude variance:

o5p(tla) = E[(z(tlo) — E[z(t)|a])’], tER.

- 0 in the interval [0,T]
- Gradually increases to o2 away from [0,T]

mean of the wavegroups:

E2[5(t|a)] = /R a(fl)pala)da =0, tER

variance of the wavegroups (over «)

0% (t) £ E*[(z(t|ar))?] = / (@(t]a))* pa(@)da, teR.

For t € [0,T] we have a tight bound, o3, (t) < o2
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LAMP: Large Amplitude Motions Program
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LAMP: Large Amplitude Motions Program
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Stochastic ship responses for each wave-episode

* Output time series for the
same wave episode but
different stochastic preludes

 Stochastic preludes allows
for shorter wave-episodes
without loosing information
for transients.

* Representation of output
time series through a finite-
dimensional (random) vector

Nout

My(tla) = Z qi(a)pir(t), te€[0,T]
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Surrogate modeling of ship responses

[qll q2/ KRy qn]

[qll q2/ KRy qn]
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Surrogate modeling using Gaussian Process Regression
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Surrogate modeling using Gaussian Process Regression
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Statistical approximation of VBM

40

The MC statistics consist of 3000 hours of
steady state simulation, which required 150
CPU days

- need to repeat for each new sea state!

The reconstructed statistics required 625
wave episodes, which required a total of 50
CPU hours

—> Once simulated, wave episodes are sea state agnostic!

Time cost for Gaussian process model

training and statistical re-sampling are trivial
~ 10 minutes



Transfer learning for different sea states
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Active sampling to reduce number of simulations

JONSWAP spectral density
2 2 oy [ = = Fp)?
Lexp[_§(é> :| "Y p[ 262‘f12’ :|

lf

2D parametrization of waves

length scale x;

Probability density
function of wave ¥
parameters

—

iteration 16

prediction

exact pdf of structural
moments with 16
simulations

o
o
-
o
N
o
w

.

CFD experiment

T3

Output pdf acquisition function

rr)1}nj|log Pyy+oy (S; X7) —log py, (s)|ds

[Mohamad & Sapsis, Proc. Nat. Acad. of Sciences, 2018]



Active sampling to reduce number of simulations
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Key points

A) Exactly solvable reduced order models

i) Asymptotic expansion around instantaneous water plane
iil) Monochromatic approximation of waves works well
iii) Each phenomenon has to be accounted carefully

iv) Other issues such as structural response (e.g. whipping) not presented but important

B) Computational method using carefully designed wave-episodes

i) Wave episodes is a promising approach for modeling ship statistics
ii) Important considerations related to wave-episode length and convergence rates
iii) GPR a promising tool for reduced-order modeling but other alternatives are possible

1V

N

Acceleration of computations by several orders of magnitude
v) Transfer learning for different spectra

vi) Active learning possible to reduce computations even more!
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More memories

2006
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