

School of Naval Architecture and Marine Engineering

Seas, Probabilities and Memories

Numerical Solution of Generalized FPK Equations in Stochastic Dynamics, Using PUFEM

Nikolaos P. Nikoletatos-Kekatos

Problem under consideration

Our starting point is the initial-value problem (IVP) for a non-linear, two-dimensional system of RDEs, reading:

$$\dot{X}_{n}(t;\theta) = h_{n}(X(t;\theta),t) + \Xi_{n}(t;\theta), \quad X_{n}(t_{0};\theta) = X_{n}^{0}(\theta), \quad n = 1, 2,$$
(1)

where

the overdot in (1) denotes differentiation with respect to time,

 θ denote the stochastic argument,

 $h_1(\mathbf{x}(t),t), h_2(\mathbf{x}(t),t)$ are continuous, deterministic functions.

Initial value $X^{0}(\theta)$ and excitation $\Xi(\bullet, \theta)$ are considered correlated and jointly Gaussian, which constitute the data of the system.

➤ The probabilistic structures of the initial value and excitation, are completely defined by means of their mean vectors m_{X⁰} and m_{Ξ(•)}(t), autocovariances matrices C_{X⁰X⁰},
 C_{Ξ(•)Ξ(•)} and the cross-covariance matrix C_{X⁰Ξ(•)}.
 O5/07/2022 Generalized FPK equations

★ To study the probabilistic structure of the response $X(t;\theta)$, of the system (1), equations with respect to the one-time probability density function (pdf) $f_{X_1(t)X_2(t)}(x) = f_{X(t)}(x)$ are formulated.

The one-time pdf-evolution equation (genFPK) (Mamis, Athanassoulis and Kapelonis, 2019) (Mamis, 2020) corresponding to the IVP (1), reads:

$$\partial_t f_{X(t)}(\mathbf{x}) + \sum_{n=1}^2 \frac{\partial}{\partial x_n} \Big[q_n(\mathbf{x},t) f_{X(t)}(\mathbf{x}) \Big] = \sum_{n_1=1}^2 \sum_{n_2=1}^2 \frac{\partial^2}{\partial x_{n_1} \partial x_{n_2}} \Big(\mathcal{D}_{n_1 n_2} \Big[f_{X(\cdot)}(\cdot); \mathbf{x},t \Big] \cdot f_{X(t)}(\mathbf{x}) \Big). \quad (2a)$$

Eq. (2) is a generalization of the classical Fokker-Planck-Kolmogorov (FPK) equation (will be presented below), which is a linear pde. To this end, Eq. (2a) is also called generalized FPK (genFPK).

Generalized FPK equations

The one-time pdf-evolution equation (genFPK)

$$\partial_{t} f_{X(t)}(\mathbf{x}) + \sum_{n=1}^{2} \frac{\partial}{\partial x_{n}} \Big[q_{n}(\mathbf{x},t) f_{X(t)}(\mathbf{x}) \Big] = \sum_{n_{1}=1}^{2} \sum_{n_{2}=1}^{2} \frac{\partial^{2}}{\partial x_{n_{1}} \partial x_{n_{2}}} \Big(\mathcal{D}_{n_{1}n_{2}} \Big[f_{X(\cdot)}(\cdot); x, t \Big] \cdot f_{X(t)}(\mathbf{x}) \Big).$$
(2a)

The quantities $\mathcal{D}_{n_1n_2}[f_{X(\cdot)}(\cdot);x,t]$ are called **generalized diffusion coefficients**, given by:

$$\mathcal{D}_{n_{1}n_{2}}\left[f_{X(\cdot)}(\cdot);x,t\right] = \sum_{\ell_{1}=1}^{2} C_{X_{\ell_{1}}^{0}\Xi_{n_{1}}(\cdot)}(t) \mathcal{B}_{n_{2}\ell_{1}}^{X_{0}\Xi(\cdot)}\left[f_{X(\cdot)}(\cdot);x,t\right] + \int_{t_{0}}^{t} C_{\Xi_{\ell_{1}}(\cdot)\Xi_{n_{1}}(\cdot)}(t,s) \mathcal{B}_{n_{2}\ell_{1}}^{\Xi(\cdot)\Xi(\cdot)}\left[f_{X(\cdot)}(\cdot);x,t,s\right] ds.$$
(2b)

The diffusion coefficients $\mathcal{D}_{n_1n_2}[\cdots]$ are also non-locally dependent on the unknown pdf, through its time-history, from the initial time up to the current time t

The diffusion coefficients $\mathcal{D}_{n_1n_2}[\cdots]$ are non-linearly dependent on x, by means of the functions $\mathcal{B}_{n_2\ell_1}^{X_0\Xi(\cdot)}[\cdots]$ and $\mathcal{B}_{n_2\ell_1}^{\Xi(\cdot)\Xi(\cdot)}[\cdots]$.

05/07/2022

Generalized FPK equations

4

In the derivation of the pdf-evolution equation (2a, b), in place of the functions $\mathcal{B}_{n_2\ell_1}^{X_0 \equiv (\cdot)} [\cdots]$ and $\mathcal{B}_{n_2\ell_1}^{\Xi(\cdot) \equiv (\cdot)} [\cdots]$, the following quantities emerge:

$$\mathcal{T}_{n_{2}\ell_{1}}^{X^{0}}\left[X(\bullet);t\right] = \mathbb{E}^{\theta}\left[\delta(x - X(t;\theta)) \underbrace{V_{n_{2}\ell_{1}}^{X^{0}}(t;\theta)}_{n_{2}\ell_{1}}\right], \quad V_{n_{2}\ell_{1}}^{X^{0}}(t;\theta) = \frac{\partial X_{n_{2}}(t)}{\partial X_{\ell_{1}}^{0}}$$

$$\mathcal{T}_{n_{2}\ell_{1}}^{\Xi(s)}\left[X(\bullet);t\right] = \mathbb{E}^{\theta}\left[\delta(x - X(t;\theta)) \underbrace{V_{n_{2}\ell_{1}}^{\Xi(s)}(t;\theta)}_{n_{2}\ell_{1}}\right], \quad V_{n_{2}\ell_{1}}^{\Xi(s)}(t;\theta) = \frac{\delta X_{n_{2}}(t)}{\delta \Xi_{\ell_{1}}(s)}$$

$$(Variational Derivatives)$$

♦ Using the initial system of RDEs, homogeneous linear systems of ODEs are formulated with respect to the quantities $V_{n_2 \ell_1}^{X^0}$, $V_{n_2 \ell_1}^{\Xi(s)}$, giving the expressions:

$$V_{n_{2}\ell_{1}}^{X^{0}}(t;\theta) = \Phi_{n_{2}\ell_{1}}\left[J\left(X(\bullet|_{t_{0}}^{t};\theta),\bullet|_{t_{0}}^{t}\right)\right], \quad V_{n_{2}\ell_{1}}^{\Xi(s)}(t;\theta) = \Phi_{n_{2}\ell_{1}}\left[J\left(X(\bullet|_{s}^{t};\theta),\bullet|_{s}^{t}\right)\right],$$

where J is the Jacobian matrix and Φ denotes the state-transition matrix.

05/07/2022

Generalized FPK equations

$$J(\cdots) = R[\cdots] + \Delta(\cdots),$$

where $R[\cdots] = \mathbb{E}^{\theta} [J(\cdots)]$ (mean value) and $\Delta(\cdots) = J(\cdots) - \mathbb{E}^{\theta} [J(\cdots)]$ (fluctuations), we obtain:

$$\Phi\left[J(\cdots)\right] = \Phi\left[R[\cdots]\right]\Phi\left[B(\cdots)\right], \quad B(\cdots) = \Phi^{-1}\left[R[\cdots]\right]\Delta(\cdots)\Phi\left[R[\cdots]\right]$$

Introducing appropriate current-time approximations for the matrices $\Phi[B(\dots)]$:

$$\mathcal{B}_{n_{2}\ell_{1}}^{X_{0}\Xi(\bullet)}\left[f_{X(\bullet)}(\bullet);x,t\right] = \left(\exp\left(\Delta\left(x,t\right)(t-t_{0})\right)\Phi\left[R\left[f_{X(\bullet|_{t_{0}}^{t})}(\bullet),\bullet|_{t_{0}}^{t}\right]\right]\right)_{n_{2}\ell_{1}},$$
(3a)

$$\mathcal{B}_{n_{2}\ell_{1}}^{\Xi(\bullet)\Xi(\bullet)}\left[f_{X(\bullet)}(\bullet);x,t,s\right] = \left(\exp\left(\Delta\left(x,t\right)(t-s)\right)\Phi\left[R\left[f_{X(\bullet|_{s})}(\bullet),\bullet|_{s}^{t}\right]\right]\right)_{n_{2}\ell_{1}}.$$
(3b)

◆ Φ[R[…]] contains moments of the pdf up to the current time t. The unknown moments at the current time are determined numerically by extrapolation, using iterations.
 05/07/2022 Generalized FPK equations

Classical FPK equation corresponding to a two-dimensional system of RDEs

Under the assumption of zero-mean, delta-correlated Gaussian excitation (Gaussian white noise):

 $C_{\Xi(\bullet)\Xi(\bullet)}^{WN}(t,s) = 2D(t)\delta(t-s)$, where $D(\bullet)$ is the noise intensity matrix,

the classical Fokker-Planck-Kolmogorov equation (FPK) (Pugachev and Sinitsyn, 2002) corresponding to the system (1) reads:

$$\partial_t f_{X(t)}(\boldsymbol{x}) + \sum_{n=1}^2 \frac{\partial}{\partial x_n} \left[h_n(\boldsymbol{x}) f_{X(t)}(\boldsymbol{x}) \right] = \sum_{n_1=1}^2 \sum_{n_2=1}^2 \mathcal{D}_{n_1 n_2}^{WN}(t) \frac{\partial^2 f_{X(t)}(\boldsymbol{x})}{\partial x_{n_1} \partial x_{n_2}}, \quad (4)$$

where the diffusion coefficients are given by:

$$\mathcal{D}_{n_1n_2}^{WN}(t) = \sum_{\ell_1=1}^2 \delta_{n_2\ell_1} D_{\ell_1n_1}(t),$$

Generalized FPK equations

05/07/2022

Stochastic oscillators

All additively excited stochastic oscillators of the form

$$\ddot{X}(t;\theta) + b\dot{X}(t;\theta) + \eta_1 X(t;\theta) + g(X(t;\theta)) = \Xi(t;\theta),$$
(5)

where $g(\cdot)$ is considered a continuous, non-linear (in general) function, attain the following state-space representation

$$\dot{X}_1(t;\theta) = X_2(t;\theta), \tag{6a}$$

$$\dot{X}_{2}(t;\theta) = -bX_{2}(t;\theta) - \eta_{1}X_{1}(t;\theta) - g(X_{1}(t;\theta)) + \Xi(t;\theta).$$
(6b)

The corresponding pdf-evolution equation to the above oscillators, reads:

$$\partial_{t} f_{X(t)}(\boldsymbol{x}) + \sum_{n=1}^{2} \frac{\partial}{\partial x_{n}} [h_{n}(\boldsymbol{x}) f_{X(t)}(\boldsymbol{x})] + m_{\Xi_{2}(t)}(t) \frac{\partial f_{X(t)}(\boldsymbol{x})}{\partial x_{2}} =$$

$$= \mathcal{D}_{21} \Big[f_{X(t)}(t); t \Big] \frac{\partial^{2} f_{X(t)}(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} + \mathcal{D}_{22} \Big[f_{X(t)}(t); x_{1}, t \Big] \frac{\partial^{2} f_{X(t)}(\boldsymbol{x})}{\partial x_{2}^{2}}.$$
(7)

Generalized FPK equations

05/07/2022

Stochastic linear oscillator

The one-time response pdf-evolution equation (genFPK-2D), corresponding to the linear oscillator, reads

$$\partial_t f_{X(t)}(\boldsymbol{x}) + \sum_{n=1}^2 \frac{\partial}{\partial x_n} \Big[\Big(h_n(\boldsymbol{x},t) + m_{\Xi_n}(t) \Big) f_{X(t)}(\boldsymbol{x}) \Big] = \sum_{n_2=1}^2 \mathcal{D}_{2n_2}(t) \frac{\partial^2 f_{X(t)}(\boldsymbol{x})}{\partial x_2 \partial x_{n_2}},$$

where

 $h_1(\mathbf{x},t) = x_2, \qquad h_2(\mathbf{x},t) = -\eta_1 x_1 - b x_2,$

and the diffusion coefficients $\mathcal{D}_{2n_2}(t)$, have closed, linear and local forms.

➤This equation despite that it is linear, maintains the non-symmetric character of the second order differential operator of the non-linear pdf-evolution equations. To this end, is a good benchmark problem for numerical methods.

Partition of Unity Finite Element Method

- Partition of Unity Finite Element Method (PUFEM), was introduced by I. Babuška and J. M. Melenk in 1996 (Melenk and Babuška, 1996; 1997), (Babuška, Banerjee, and Osborn 2003), (Oh, Kim, and Hong 2008).
 - PUFEM was chosen for the numerical solution of the pdf-evolution equations, due to the following properties
 - It is a meshless method, avoiding the complicated meshing process of FEM, especially in the multidimensional set up.
 - The method resolves the problem of interelement conformity (smoothness) –at any order and in any space dimension (but the curse of dimensionality remains and needs special treatment).
 - \triangleright PUFEM is essentially a generalization of the *h*, *p* and *hp* versions of the classical FEM

PUFEM construction in 1D

A uniform cover (patches of equal lengths) of $\Omega \subset \mathbb{R}$, $(\Omega_k)_{k=1}^K$, has the following layout:

A partition of unity family of functions $\left(\varphi_{k}(\cdot) \in C^{s}(\Omega)\right)_{k}^{K}$ (*C*^s - **PU**), which subordinates to

the cover $\left(\Omega_{k}\right)_{k=1}^{K}$ of Ω , has the following layout:

Partition of Unity Finite Element Method

05/07/2022

PUFEM construction in 1D

- ➤ A local basis (LB) on each patch Ω_k , $\{b_{\mu}^k(\bullet) \in C^\ell(\Omega_k \to \mathbb{R}), \mu = 1, 2, ..., M(k)\}$.
 - In our construction we use Legendre polynomials.

Figure: Reference PU function $\tilde{\varphi}_k(x)$

An approximate basis in the global domain Ω is constructed by means of the <u>shape</u> <u>functions</u> (SF): $u_{\mu}^{k}(x) = \varphi_{k}(x) b_{\mu}^{k}(x), x \in \Omega_{k}, \mu = 1(1) M(k).$

Figure: Reference PU-shape functions

PUFEM construction in 2D

13

A uniform 2D-cover of the global domain $\Omega^1 \times \Omega^2 \subset \mathbb{R} \times \mathbb{R}$, $\left(\Omega_{k_1k_2}\right)_{k_1,k_2=1}^{K_1,K_2}$, is obtained

by the cartesian product of two 1D-covers covering Ω^1 , Ω^2 .

➤A partition of unity family which subordinates to the 2D-cover, is defined, by means of the tensor product of two 1D C^s –PU families:

$$\varphi_{k_1k_2}(x_1, x_2) = \varphi_{k_1}(x_1)\varphi_{k_2}(x_2), \quad (x_1, x_2) \in (\Omega^1_{k_1} \times \Omega^2_{k_2}).$$

05/07/2022

A local basis on each $\Omega_k := \Omega_{k_1} \times \Omega_{k_2}$, by means of the tensor product of two local basis sets defined on $\Omega_{k_1}, \Omega_{k_2}$:

$$b_{\mu_1,\mu_2}^{k_1k_2}(x_1,x_2) = b_{\mu_1}^{k_1}(x_1) b_{\mu_2}^{k_2}(x_2), \quad (x_1,x_2) \in \Omega_{k_1,k_2}, \quad \mu_1 = 1(1) M_1(k_1), \quad \mu_2 = 1(1) M_2(k_2).$$

An approximate basis in the global domain Ω is constructed by means of the <u>shape func-</u> <u>tions</u> (SF), given, for $(x_1, x_2) \in \Omega_{k_1, k_2}$, by:

$$u_{\mu_{1},\mu_{2}}^{k_{1}k_{2}}(x_{1},x_{2}) = \varphi_{k_{1},k_{2}}(x_{1},x_{2}) b_{\mu_{1},\mu_{2}}^{k_{1}k_{2}}(x_{1},x_{2}), \mu_{1} = 1(1) M_{1}(k_{1}), \ \mu_{2} = 1(1) M_{2}(k_{2}).$$
Partition of Unity Finite Element Method

PUFEM construction in 2D

05/07/2022

Partition of Unity Finite Element Method

Approximate PU-Representation

- * The global approximation space $V^{PU}(\Omega)$ by Theorem 2.1 in (Melenk & Babuška, 1996), is dense in $C(\Omega), C^{1}(\Omega)$ and $H^{1}(\Omega)$.
- The approximate global representation of a function $f \in C(\Omega)$, in $V^{PU}(\Omega)$, reads:

$$\begin{aligned} f'(x_1, x_2) &= \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} \sum_{\mu_1=1}^{M_1(k_1)} \sum_{\mu_2=1}^{M_2(k_2)} w_{\mu_1, \mu_2}^{k_1 k_2} u_{\mu_1, \mu_2}^{k_1 k_2} (x_1, x_2) = \\ & 2D^{\uparrow}SFs \end{aligned} \\ &= \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} \sum_{\mu_1=1}^{M_1(k_1)} \sum_{\mu_2=1}^{M_2(k_2)} w_{\mu_1, \mu_2}^{k_1 k_2} u_{\mu_1}^{k_1} (x_1) u_{\mu_2}^{k_2} (x_2) = \\ & 1D^{-SFs in k_1 patch} 1D^{-SFs in k_2 patch} \end{aligned} \\ &= \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} \sum_{\mu_1=1}^{M_1(k_1)} \sum_{\mu_2=1}^{M_2(k_2)} w_{\mu_1, \mu_2}^{k_1 k_2} (\varphi_{k_1} (x_1) u_{\mu_1}^{k_1} (x_1)) (\varphi_{k_2} (x_2) u_{\mu_2}^{k_2} (x_2)) \\ & 1D^{-PUF in k_1 patch} 1D^{-BFs in k_1 patch} \end{aligned}$$

05/07/2022

ſ

The linear oscillator

The equation of the linear oscillator reads

$$\ddot{X}(t;\theta) + 2\zeta \omega_0 \dot{X}(t;\theta) + \omega_0^2 X(t;\theta) = \frac{\Xi(t;\theta)}{m}$$
$$\dot{X}(t_0;\theta) = \dot{X}_0(\theta), \quad X(t_0;\theta) = X_0(\theta).$$

We specify the parameters of the oscillator as

 $\zeta = 0.5, \quad \omega_0 = 1 \quad \text{and} \quad m = 1,$

corresponding to an underdamped oscillator.

As excitation $\Xi(t;\theta)$ we consider a nonzero-mean Ornstein-Uhlembeck (OU) process, with autocorrelation function

$$C_{\Xi(\bullet)\Xi(\bullet)}(t,s) = \frac{D_{\text{OU}}}{\tau_{\text{cor}}} \exp\left(-\frac{|t-s|}{\tau_{\text{cor}}}\right), \quad m_{\Xi} = 0.5$$

where $D_{\rm OU}$ denotes the intensity of the noise, and $\tau_{\rm cor}$ the correlation time.

05/07/2022

Corresponding pdf-evolution equation to the linear oscillator

The one-time response pdf-evolution equation (genFPK-2D), corresponding to the oscillator, reads

$$\partial_t f_{X(t)}(\boldsymbol{x}) + \sum_{n=1}^2 \frac{\partial}{\partial x_n} \Big[\Big(h_n(\boldsymbol{x},t) + m_{\Xi_n}(t) \Big) f_{X(t)}(\boldsymbol{x}) \Big] = \sum_{n_2=1}^2 \mathcal{D}_{2n_2}(t) \frac{\partial^2 f_{X(t)}(\boldsymbol{x})}{\partial x_2 \partial x_{n_2}},$$

where

$$h_1(\mathbf{x},t) = x_2, \qquad h_2(\mathbf{x},t) = -\omega_0^2 x_1 - 2\zeta \omega_0 x_2,$$

and the diffusion coefficients $\mathcal{D}_{2n_2}(t)$, setting $a = -\zeta \omega_0$ and $b = \omega_0 (1-\zeta^2)^{1/2}$, are expressed as

$$\mathcal{D}_{21}(t) = \int_{t_0}^{t} C_{\Xi(\cdot)\Xi(\cdot)}(t,s) \frac{e^{a(t-s)}}{b} \sin(b(t-s)) \, ds,$$

$$\mathcal{D}_{22}(t) = \int_{t_0}^{t} C_{\Xi(\cdot)\Xi(\cdot)}(t,s) \frac{e^{a(t-s)}}{b} \left(a\sin(b(t-s)) + b\cos(b(t-s))\right) \, ds.$$

05/07/2022

Numerical results

17

Linear oscillator: Weak formulation

<u>The approximation problem reads</u>: For each $t \in [0, T_f]$, find $f \in V^{PU}$ such that: $\forall g \in V^{PU}$

$$\int_{\Omega} \frac{\partial f(\boldsymbol{x},t)}{\partial t} g(\boldsymbol{x}) d\boldsymbol{x} = \sum_{n=1}^{2} \int_{\Omega} \left[(h_n(\boldsymbol{x},t) + m_{\Xi_n}(t)) f(\boldsymbol{x},t) \right] \frac{\partial g(\boldsymbol{x})}{\partial x_n} d\boldsymbol{x} + \int_{\Omega} \mathcal{D}_{21}(t) \frac{\partial f(\boldsymbol{x},t)}{\partial x_1} \frac{\partial g(\boldsymbol{x})}{\partial x_2} + \mathcal{D}_{22}(t) \frac{\partial f(\boldsymbol{x},t)}{\partial x_2} \frac{\partial g(\boldsymbol{x})}{\partial x_2} d\boldsymbol{x},$$

and

$$\int_{\Omega} f(\mathbf{x},0)g(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f_0(\mathbf{x})g(\mathbf{x}) d\mathbf{x}.$$

boundary integrals are eliminated due to the partition of unity structure

Since the unknown pdf f(x,t), is defined on \mathbb{R}^2 , the problem is free of boundary conditions, with the understanding that the finite global domain Ω is considered, such that: $\int_{\Omega} f \, d\Omega \approx 1.$

05/07/2022

System of Equations

Following a Bubnov-Galerkin approach in $V^{PU}(\Omega)$, the weak problem results in a linear system of the form:

 $\boldsymbol{A}\,\dot{\boldsymbol{w}}(t)=\boldsymbol{B}(t)\,\boldsymbol{w}(t)$

The time discretization of the problem is conducted by approximating the time derivative via a Crank-Nicolson scheme. The final system reads:

$$\left(A - \frac{\Delta t}{2}B(t + \Delta \tau)\right)w(t + \Delta \tau) = \left(\frac{\Delta t}{2}B(t) + A\right)w(t),$$

where $\Delta \tau$ is the time-step.

▶ Initialization of the numerical scheme requires to fit the PU-representation to the known initial density $f_0(\mathbf{x})$, obtaining the weights $\mathbf{w}_0 = \mathbf{w}(t_0)$.

Initial fitting

Initial pdf, $f_{X(0)}(x)$, is taken Gaussian with mean value vector $\boldsymbol{m}_0 = (0.25, 0.25)$ and covariance matrix $\boldsymbol{C}_{X^0 X^0} = \begin{bmatrix} 0.35 & 0 \\ 0 & 0.35 \end{bmatrix}$.

Figure A: Given initial pdf $f_{X(0)}(x)$ at t = 0

05/07/2022

Steady state solution

Figure 1: The pdf of the linear oscillator at steady state for $\tau_{\rm cor} = 1$

05/07/2022

Pdf evolution

05/07/2022

Numerical results

22

Pdf evolution

05/07/2022

Numerical results

23

Pdf evolution

Figure 3: evolution of moments

HAN I

The Duffing oscillator

The equation of the Duffing oscillator reads

$$m\ddot{X}(t;\theta) + b\dot{X}(t;\theta) + \eta_1 X(t;\theta) + \eta_3 X^3(t;\theta) = \Xi(t;\theta)$$
$$\dot{X}(t_0;\theta) = \dot{X}_0(\theta), \quad X(t_0;\theta) = X_0(\theta),$$

We study the **bistable** case for

m = 1, b = 0.5, $\eta_1 = -1$ and $\eta_3 = 1.1$.

The excitation $\Xi(t;\theta)$, is considered a zero-mean Ornstein-Uhlembeck (OU) process

Finitial value $X_0(\theta)$ is taken uncorrelated to the excitation.

Under the assumption of white noise excitation, with autocorrelation function

$$C_{\Xi(\bullet)\Xi(\bullet)}^{WN}(t,s) = 2D_{WN}\,\delta(t-s),$$

the classical FPK equation, corresponding to the Duffing oscillator reads

$$\partial_t f_{X(t)}(\boldsymbol{x}) + \sum_{n=1}^2 \frac{\partial}{\partial x_n} \Big[h_n(\boldsymbol{x},t) f_{X(t)}(\boldsymbol{x}) \Big] = \frac{\partial^2}{\partial x_2^2} D_{\text{WN}} f_{X(t)}(\boldsymbol{x})$$

The **drift coefficients** in the above equation read:

$$h_1(x,t) = x_2,$$
 $h_2(x,t) = -\eta_1 x_1 - b x_2 - \eta_3 x_1^3.$

05/07/2022

Numerical results

26

Transient solution of FPK

Figure 4: PUFEM solution of FPK corresponding to the Duffing oscillator at transient state for $D_{WN} = 0.12$

Steady state solution of FPK

Figure 5: PUFEM solution of FPK corresponding to the Duffing oscillator at steady state for $D_{WN} = 0.12$

05/07/2022

Level sets and moments

Figure 6: Pdf level sets at steady state, t = 8. Comparison of numerical and analytic solutions

Pdf-evolution equation for the Duffing oscillator

The one-time response pdf-evolution equation, corresponding to the oscillator reads

$$\partial_{t} f_{X(t)}(\boldsymbol{x}) + \sum_{n=1}^{2} \frac{\partial}{\partial x_{n}} \Big[h_{n}(\boldsymbol{x},t) f_{X(t)}(\boldsymbol{x}) \Big] = \sum_{n=1}^{2} \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} \Big(\mathcal{D}_{2n} \Big[f_{X(\cdot)}(\cdot); \boldsymbol{x},t \Big] \cdot f_{X(t)}(\boldsymbol{x}) \Big).$$
$$f_{X(0)}(\boldsymbol{x}) = f_{X^{0}}(\boldsymbol{x}).$$

In the above equation, the **drift coefficients** $h_n(x,t)$ reads:

$$h_1(x,t) = x_2, \qquad h_2(x,t) = -\eta_1 x_1 - b x_2 - \eta_3 x_1^3$$

The **diffusion coefficients** are expressed as

$$\mathcal{D}_{2n}^{\Xi(\bullet)\Xi(\bullet)}\left[f_{X(\bullet)}(\bullet);\boldsymbol{x},t\right] = \int_{t_0}^t C_{\Xi_2(\bullet)\Xi_2(\bullet)}(t,s) \,\mathcal{B}_{n2}^{\Xi(\bullet)\Xi(\bullet)}\left[f_{X(\bullet)}(\bullet);\boldsymbol{x},t,s\right] ds.$$

05/07/2022

Figure 8: PUFEM solution of pdf-evolution equation corresponding to the Duffing oscillator at different times for $\tilde{\tau} = 0.02$

Figure 9: Level sets of PUFEM solution at different times, for $\tilde{\tau} = 0.02$

Figure 10: PUFEM solution of pdf-evolution equation corresponding to the Duffing oscillator at different times for $\tilde{\tau} = 0.05$

Figure 11: Level sets of PUFEM solution at different times, for $\tilde{\tau} = 0.05$

05/07/2022

Evolution of moments

Figure 12: Evolution of moments for different correlation times $\tau = 0.02$ (left) and $\tau = 0.05$ (right).

Numerical results

05/07/2022

- Verification, via Monte Carlo simulation, of the results concerning the Duffing oscillator
- Investigation and better understanding of the effect of the correlation time and intensity of the excitation
- Study of convergence and error analysis of the partition of unity finite element method and improvement of the numerical scheme .

References

- Babuška, Ivo, Uday Banerjee, and John E Osborn. 2003. 'Survey of Meshless and Generalized Finite Element Methods: A Unified Approach'. *Acta Numerica* 12: 1–125.
- Mamis, K. I., G. A. Athanassoulis, and Z. G. Kapelonis. 2019. 'A Systematic Path to Non-Markovian Dynamics: New Response Probability Density Function Evolution Equations under Gaussian Coloured Noise Excitation'. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.*
- Mamis, K.I. 2020. 'Probabilistic Responses of Dynamical Systems Subjected to Gaussian Coloured Noise Excitation. Foundations of a Non-Markovian Theory'. National Technical University of Athens.
- Melenk, J. M., and I. Babuška. 1996. 'The Partition of Unity Finite Element Method: Basic Theory and Applications'. *Computer Methods in Applied Mechanics and Engineering*.
- Oh, Hae-Soo, June G Kim, and Won-Tak Hong. 2008. 'The Piecewise Polynomial Partition of Unity Functions for the Generalized Finite Element Methods'. *Computer Methods in Applied Mechanics and Engineering* 197(45): 3702–11.