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Problem under consideration

Our starting point is the initial-value problem (IVP) for a non-linear, two-dimensional system

of RDEs, reading:
X, (t:0) = h,(X(t;0),t)+E,(t;0), X,(t,;0)=X)(6), n=1,2, (1)

where

the overdot in (1) denotes differentiation with respect to time,
@ denote the stochastic argument,

h(x(t),t),h,(x(t),t) are continuous, deterministic functions.

Initial value X°(@) and excitation E(s,0) are considered correlated and jointly Gaussian,
which constitute the data of the system.

»The probabilistic structures of the initial value and excitation, ate completely defined

by means of their mean vectors M ,, and m, (1), autocovariances matrices C .0,

Ca(-)a(-) and the cross-covariance matrix CXO =)’
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Generalized FPK equation corresponding to
a two-dimensional system of RDEs

% To study the probabilistic structure of the response X (7;8), of the system (1), equations
with respect to the one-time probability density function (pdf) £ .y, (%) = fx, (x) are

formulated.

The one-time pdf-evolution equation (genFPK) (Mamis, Athanassoulis and Kapelonis, 2019)
(Mamis, 2020) corresponding to the IVP (1), reads:

ath(z)(x)_'_Z %I:qn(xat) fX(z)(x):Iz i i ‘ (1)}11}12I:fX(.)(.);xat:I.fX(t)(x))' (221)

n=1 nl:lnz:l@xm@xnz

» Eq. (2) is a generalization of the classical Fokker-Planck-Kolmogorov (FPK) equation (will
be presented below), which 1s a linear pde. To this end, Eq. (2a) is also called generalized
FPK (genFPK).
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Generalized FPK equation corresponding to
a two-dimensional system of RDEs

The one-time pdf-evolution equation (genFFPK)

8th(t)(x)"'Z %I:qn(xﬂt) fX(t)(x)]Z i i ¢ (Z)nlnz[fX(.)(°);xat]'fX(t)(x))- (2a)

n=1 n=1n,=1 8)(:”16)6”2

The quantities D, [ f X(,)(-);x,t] are called generalized diffusion coefficients, given by:

e G OBIF [ fo (hixa]+

1= n1

Dy [ S (hixst ] =3 €,
o (2b)

t

E()E() .
+ C: (')Enl(')(t’ S) anél I:fX(.)(.)axatas}dS-

By,
Ly

»The diffusion coefficients O, , [--] are also non-locally dependent on the unknown pdf,
through its time-history, from the initial time up to the current time ¢

» The diffusion coefficients D, , [--] are non-linearly dependent on x, by means of the func-

tions BHZOIE(-) [--] and 8= ]

nyty
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Generalized FPK equation corresponding to
a two-dimensional system of RDEs

In the derivation of the pdf-evolution equation (2a, b), in place of the functions an,fla(') [-~-]Jand

B[], the following quantities emerge:

nyl,
’ 0 0 aXn (t)
TN (X st] = B X0 VY o) |, v 0) = =
0X 0, Variational
_ _ _ 5X (1) Derivatives
T [X ()5t ] = Eg[é‘(x - X (£:0)) Vi) (£:0) } V) = S s
E, (s

% Using the initial system of RDEs, homogeneous linear systems of ODEs are formulated

)
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. .. 0 = .o .
with respect to the quantities sz 0> V;z(;)1 , giving the expressions:

rX (o) =, [J( X (-

' 50),

150),

jo )} VEQO(t;0) = @, , [J(X(-

where J is the Jacobian matrix and @ denotes the state-transition matrix.



Generalized FPK equation corresponding to
a two-dimensional system of RDEs

o Decomposing the Jacobian matrix J in two parts:

J() — R[] + A(---),
where R[---] = B[ J(--)] (mean value) and A(-+) = J(-+) - B°[J(--)] (fluctuations), we
obtain:

(I)I:J()] - q)[R[...]]q)[B(...)], B(-+) = q)—l[R[...]] A() q)[R[]]

Introducing approprtiate current-time approximations for the matrices ®[ B(---) |:

8.7 i) = [ea(atxay =)ol w1 o ]| o
ang'l)a(')[va)(');x’t’S] - (exP(A(xJ)(f—S))Q{R[fxoi)(')"i} j ' (3b)

o (I)[ R[ ]] contains moments of the pdf up to the current time #. The unknown moments

at the current time are determined numerically by extrapolation, using iterations.
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Classical FPK equation corresponding to a
two-dimensional system of RDEs

Under the assumption of zero-mean, delta-correlated Gaussian excitation (Gaussian white

noise):
C;V(I:I)E(.)(t,s) =2D(t)0(t —s), where D(e®) is the noise intensity matrix,

the classical Fokker-Planck-Kolmogorov equation (FPK) (Pugachev and Sinitsyn, 2002) corre-
sponding to the system (1) reads:

2 2 2 82
ath(t)(x)+ Zai[hn(x) fX(t)(x)] = Z Z@niﬁf(f) a){xg);x)’ )

where the diffusion coefficients are given by:

2
Z)WN(t) - Z 6”‘251 Dﬁl’ﬁ(t)’

npn,
glzl
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Stochastic oscillators

All additively excited stochastic oscillators of the form
X(1;0) +bX (1;0) +1.X(1;0) + g(X(1;0)) = E(1;0),

(5)

where g () is considered a continuous, non-linear (in general) function, attain the following

state-space representation
X (t;60) = X ,(1;0),
X, (t;0) = —bX,(t;0) -1, X (t:0) — g(X,(t;0)) + Z(¢;0).

The corresponding pdf-evolution equation to the above oscillators, reads:

S 0 0fyu (%)
ath(t)(x)+ZGT[hH(X)fXU)(X)]+m32(.)(t) a(x) X =

2

X(t)( )

0" [y (%)

D,[ /(23117 + D, [ F (it 228

Gxx ;
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Stochastic linear oscillator

The one-time response pdf-evolution equation (genl'PI-21D); corresponding to the linear oscil-
lator, reads

i fX(z)(x)
0x, Ox, ’

0, Fxn() + 3 (b x4 me () fen()] = D0 D, 0

n, =1
where
h(x,t) = x,, h,(x,t) = —nx,—bx,,
and the diffusion coefficients D,, (7), have closed, linear and local forms.
»This equation despite that it is linear, maintains the non-symmetric character of the second

order differential operator of the non-linear pdf-evolution equations. To this end, 1s a good
benchmark problem for numerical methods.

05/07/2022 Generalized FPK equations 9



Partition of Unity Finite Element Method

* Partition of Unity Finite Element Method (PUFEM), was introduced by I. Babuska
and J. M. Melenk in 1996 (Melenk and Babuska, 1996; 1997), (Babuska, Banerijee,
and Osborn 2003), (Oh, Kim, and Hong 2008).

“*PUFEM was chosen for the numerical solution of the pdf-evolution equations,
due to the following properties

» It is a meshless method, avoiding the complicated meshing process of FEM, especially in the
multidimensional set up.

» The method resolves the problem of interelement conformity (smoothness) —at any order
and in any space dimension (but the curse of dimensionality remains and needs special

treatment).

» PUFEM is essentially a generalization of the A, p and /p versions of the classical FEM
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PUFEM construction in 1D

K
» A uniform cover (patches of equal lengths) of Q c R, (Q . )k _, has the following layout:

Q, Q, Qg Qg
A AL A
- h ~ ~ ~ ~
— N
Y Y Y
Q, Q5 Q; Q;

» A partition of unity family of functions ( . (+)eC’(Q) )kK (C*-PU), which subordinates to
the cover (Q k)K of £2, has the following layout:

| Qo ~
= -
41908, P2 Pr=In., PN
I' I
o=
Xo X1 Xo X3 X4 Xk,—1 Xk, Xk, +1
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PUFEM construction in 1D
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PUFEM construction 1n 2D

> A uniform 2D-cover of the global domain Q' x Q* c RxR, (Q,, | "

by the cartesian product of two 1D-covers covering Q' o°.
» A partition of unity family which subordinates to the 2D-cover, is defined, by means of the
tensor product of two 1D C* —PU families:
0, (x,x,) =0, (x)e, (x)), (x,x,)€(Q, xQp ).
» A local basis on each Q  := Q xQ , by means of the tensor product of two local basis sets

definedon Q, , QO
b (x,, 2> b (x) b, (x,), (x,x)eQ, ,,u =1M(k), u, =1(1)M,(k,).
% An approximate basis in the global domain € is constructed by means of the shape finc-
tions (SF), given, for (x ,x,) € Q by:
kl 2
(x,x,)= D, ok, (x,,x, )b (x1ax2)aﬂ1 =1()M,(k,), p, =1 (1M, (k,).

ﬂl Ho
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PUFEM construction 1n 2D

» A uniform cover of the global domain, »The reference 1D-PUF ¢ (&) is constructed

()
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KI’KZ

kyky =1

, has the following layout: by means of a polynomial function.
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Approximate PU-Representation

< The global approximation space V" (Q) by Theorem 2.1 in (Melenk & Babuska, 1996), is
dense in C(Q),C'(Q) and H'(Q).
» The approximate global representation of a function f € C(Q),in V"™ (Q), reads:

Ky Ky M (k) M,(ky)

(xl’x - Z Z Z Wm Uy ul ﬂz(xl’x )_
= )

ky =1k, =1 u, My =1

—_—

D-SFs
K, K, M (k) M,(k,)

k k k
- Z Z Z Wﬂl1 ;2 uﬂl1(x1) uﬂzz(xz) -

ky=lky=1 ;=1 u,=1 0 0
1D-SFs in kj patch  1D—SFsin k, patch
Kl KZ Ml(kl) MZ(kZ) k k k k
=22 2 2 W e (x) W (x) ) (, (x) Ul (x,)
ky =1k, =1 py=1 p, =1

il t
ID-PUF in k; patch  1D-BFs in k; patch
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The linear oscillator
The equation of the linear oscillator reads
= (t;0)

X (t;0)+2lw, X (1;0) + o) X (1;0) =
m
X (1,;0)=X,(0).

X (2,,0) = XO(Q),

We specity the parameters of the oscillator as

=05, w,=1 and m=1,

corresponding to an underdamped oscillator.
As excitation E (¢;0) we consider a nonzero-mean Ornstein-Uhlembeck (OU) process, with au-

l)OLI
€X

tocorrelation function
|t — 5|
Cazm(ts) = . [— ] mg = 0.5
cor
where D, denotes the intensity of the noise, and 7, the correlation time.

Numerical results
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Corresponding pdf-evolution equation to
the linear oscillator

The one-time response pdf-evolution equation (genl'PIK-21)); corresponding to the oscillator,

reads
~ 9 - 0* fxn(X)
_ X (1)
0, fX(t)(x) + nz:l o, [(hn(x,t) + mgn(t)) fX(t)(x)] = nz:l @2n2(t) o, 5xn2 5
where
h(x,t) = x,, hy(x,t) = —w;x, — 2w, x,,
and the diffusion coefficients D,, (1), setting a = —{w, and b = w,(1 - ¢*)"?, are expressed as

t

D, (1) = fCE(-)E(-)(taS)

Iy

a(t—ys)

sin(h(t — s)) ds,

t

D,, (1) = f Coyor (1,5)

Iy

ea(t —5)

(asin(b(t —s)) + beos(b(t —s)) ) ds.
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ILinear oscillator: Weak formulation

The approximation problem reads: For each t €[0,T, 1, find f eV "™ such that: VgeV ™

J—aféj’t)g(x) dx =3 [[(h,(x.0)+ mEn(t))f(x,t)]ag;x) dx +
_ J.@m(f)afa(x’t)ag(x) ‘D, (t)ﬁf(x,t)ﬁg(x) dx.
o) X1 Ox, ox, ox,

and

to the partition of unity structure

j f(x,0)g(x)dx = j fi(x)g(x)dx. {boundary integrals are eliminated due}
Q Q

» Since the unknown pdf f(x,?), is defined on R?, the problem is free of boundary condi-
tions, with the understanding that the finite global domain € is considered, such that:

[ raa =1
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System of Equations

» Following a Bubnov-Galerkin approach in V" (Q), the weak problem results in a linear
system of the form:

Aw(t) = B(t)w(t)

» The time discretization of the problem is conducted by approximating the time derivative via a
Crank-Nicolson scheme. The final system reads:

A- %B(r n Ar)]w(t + A7) = [%B(t) + A]w(t),

where A7 1s the time-step.

> Initialization of the numerical scheme requires to fit the PU-representation to the known
initial density f,(x), obtaining the weights w, = w(¢,).
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Initial fitting
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Steady state solution
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Pdf evolution

05/07/2022

Numerical results
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Pdf evolution
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Numerical results
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Pdf evolution
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Numerical results
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The Dutting oscillator

The equation of the Duffing oscillator reads
mX (t;0) +bX (t;0) +n, X (t;0) +n, X’ (t;0) = Z(1;0)
X (t,:0)= X,(0), X (t,;0)=X,(0),

We study the bistable case for
m=1, b=0.5, np,=-1 and 7n,=1.1.
»The excitation = (¢;60), is considered a zero-mean Ornstein-Uhlembeck (OU) process

» Initial value X (0) is taken uncorrelated to the excitation.
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FPK equation for the Dutfing oscillator

Under the assumption of white noise excitation, with autocorrelation function
WN
the classical FPK equation, corresponding to the Duffing oscillator reads

82

—2DWN fX(t)(x)
0Xx,

2
0 fxn(x) + Z a%[hn(x,f) Sx(X)] =
n=1 n

The drift coefficients in the above equation read:

h(x,t) = x,, hy(x,t) = —n,x, —bx, — 15X,
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Transient solution of FPK
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Steady state solution of FPK
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Level sets and moments
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Pdf-evolution equation for the Duffing oscillator

The one-time response pdf-evolution equation, corresponding to the oscillator reads
2

0, fx i)+ D = () Sy (0] = YD, [ (it ] S (0))

£ 0 x,0x,

fX(O)(x) = fXO (x).

In the above equation, the drift coefficients 7, (x,r) reads:

hi(x,t) = x,, hy(x,t) = —n,x, —bx, —773)6?

The diffusion coefficients are expressed as

t

DEOEO £y (ixat] = fc-z()- () BIOFI £ ()ix.t,s ] ds.

Iy
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Evolution of solution
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Evolution of solution
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Evolution of solution
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Evolution of solution
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Evolution of moments
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Future goals

* Verification, via Monte Carlo simulation, of the results concerning the
Duftfing oscillator

* Investigation and better understanding of the effect of the correlation
time and intensity of the excitation

* Study of convergence and error analysis of the partition of unity finite
element method and improvement of the numerical scheme .
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