
School of  Naval Architecture and Marine Engineering

National Technical University of  Athens

Numerical Solution of  

Generalized FPK Equations in 

Stochastic Dynamics, Using 

PUFEM

Nikolaos P. Nikoletatos-Kekatos

Seas, Probabilities and Memories



05/07/2022 Generalized FPK equations 2

Problem under consideration

Our starting point is the initial-value problem (IVP) for a non-linear, two-dimensional system 
of  RDEs, reading:  
 

 ( ; ) ( ; ) , ( ; )n n nX t h t t t    Xɺ ,      
0

0( ; ) ( )n nX t X  ,      1, 2n  ,       (1) 
 

where  
 

the overdot in (1) denotes differentiation with respect to time,  
 

  denote the stochastic argument,  
 

1 2
( ( ) , ) , ( ( ) , )h t t h t tx x  are continuous, deterministic functions. 

 

Initial value 0 ( )X  and excitation ( , )iΞ  are considered correlated and jointly Gaussian, 

which constitute the data of  the system.  
 

 The probabilistic structures of  the initial value and excitation, are completely defined  

by means of  their mean vectors 0
X

m  and ( ) ( )tm
iΞ

, autocovariances matrices 0 0
X X

C , 

( ) ( )C
i iΞ Ξ

 and the cross-covariance matrix 0 ( )X
C

iΞ
.  
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs

Generalized FPK equations

 To study the probabilistic structure of  the response ( ; )t X , of  the system (1), equations 

with respect to the one-time probability density function (pdf) 
1 2( ) ( ) ( )( ) ( )X t X t tf f

X
x x  are 

formulated. 
 

The one-time pdf-evolution equation (genFPK) (Mamis, Athanassoulis and Kapelonis, 2019)

(Mamis, 2020) corresponding to the IVP (1), reads: 
 

    
2

1 2 1 2

1

22 2 2

( ) ( ) ( )

1 1 1

( )
( ) ( ) ( ) .( , ) ( ) ; ,

t t t t

n

n n

n nn n n

n
f f fq x t x

x
f

x
t

x  

 
       

     XX X X
x x x�

i
i    (2a) 

 

 Eq. (2) is a generalization of  the classical Fokker-Planck-Kolmogorov (FPK) equation (will 
be presented below), which is a linear pde. To this end, Eq. (2a) is also called generalized 
FPK (genFPK).  



05/07/2022 4

Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs
The one-time pdf-evolution equation (genFPK) 
 

    
2

1 2 1 2

1

22 2 2

( ) ( ) ( )

1 1 1

( )( ) ( ) ( ) .( , ) ( ) ; ,t t t t

n

n n

n nn n n

nf f fq x t x
x

f
x

t
x  

        
     XX X X

x x x�
i
i    (2a) 

 

The quantities 
1 2 ( ) ( ) ; ,n n x tf  X

�
i
i  are called generalized diffusion coefficients, given by:  
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       (2b) 

 

 The diffusion coefficients  
1 2n n� ⋯  are also non-locally dependent on the unknown pdf, 

through its time-history, from the initial time up to the current time t  
 

 The diffusion coefficients  
1 2n n� ⋯  are non-linearly dependent on x , by means of  the func-

tions  0

2 1

( )X

n


�

i

ℓ
⋯  and  

2 1

( ) ( )

n

 
�

i i

ℓ
⋯ . 

Generalized FPK equations
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs

In the derivation of  the pdf-evolution equation (2a, b), in place of  the functions  0

2 1

( )X

n


�

i

ℓ
⋯ and 

 
2 1

( ) ( )

n

 
�

i i

ℓ
⋯ , the following quantities emerge: 

 

    
0 0

2 1 2 1
( () ; )( ) ( ; );n nt tt V       

X X
X x X�

ℓ ℓ
i E ,     

0
2

2 1

1

0

( )
( ; )

n

nV
X t

t
X







X

ℓ

ℓ

 

 

    
2 1 2 1

( ) ( )( ) (( ; ) ) ( ; );s s

n ntt tV       
X x X�

ℓ ℓ
i E

Ξ Ξ ,     
2

2 1

1

( )
( )

( ; )
Ξ ( )

ns

nV
X t

t
s







ℓ

ℓ

Ξ  

 

 Using the initial system of  RDEs, homogeneous linear systems of  ODEs are formulated 

with respect to the quantities 
0

2 1nV
X

ℓ
, 

2 1

( )s

nV ℓ

Ξ , giving the expressions:   
 

    2 02 1 1 0

0

( ; ) ( ; ) ,n n

t t

t t
V t      

X
J X

ℓ ℓ
i i ,     2 1 2 1

( )
( ; ) ( ; ) ,

t t

s

s

n snV t   
 

 J X
ℓ ℓ

i i
Ξ , 

where J  is the Jacobian matrix and   denotes the state-transition matrix.  

Variational 
Derivatives 

Generalized FPK equations
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs
 Decomposing the Jacobian matrix J in two parts: 

 

      J R Δ⋯ ⋯ ⋯ , 
 

where        R J⋯ ⋯E  (mean value) and           Δ J J⋯ ⋯ ⋯E  (fluctuations), we  

obtain: 
 

     ( )     J R B⋯ ⋯ ⋯Φ Φ Φ ,          1( )         B R Δ R⋯ ⋯ ⋯ ⋯Φ Φ . 
 

Introducing appropriate current-time approximations for the matrices  ( )B ⋯Φ : 
 

  0

2 1

2 1

0
0

( ) 0

)

( )

(
( ) ; , exp , ( ) ( ,)t

t
n

t

t

X

n

x tf ft t t
    

     
  


X

X
Δ x R�

iℓ

ℓ

i

i

i i iΦ ,        (3a)  

 

  
2 1

2 1

( ) (

( ) ( )

)
x( ) e p , ( ) ,; (, ), t

s
n

t

s

n

x t ft t sf s               
X X

Δ x R�
i

i

i i

ℓ

ℓ

ii iΦ .       (3b)  

    R ⋯Φ  contains moments of  the pdf  up to the current time t . The unknown moments 

at the current time are determined numerically by extrapolation, using iterations. 

Generalized FPK equations
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Classical FPK equation corresponding to a 
two-dimensional system of   RDEs
Under the assumption of  zero-mean, delta-correlated Gaussian excitation (Gaussian white 

noise): 
 

 WN

( ) ( )
( , ) 2 ( ) ( )t s t t s C D

i iΞ Ξ
,    where    ( )D  is the noise intensity matrix, 

 

the classical Fokker-Planck-Kolmogorov equation (FPK) (Pugachev and Sinitsyn, 2002) corre-

sponding to the system (1) reads: 
 

1 2 1 2

1 2

22 22
( )

( ) ( )

1 1

W

1

( )
( ) (( ) ( ) )n

t

t t n t

n nn n n

n

n

f
f h f

x
t

x x



 

          X

X X

x
x x x � ,   (4) 

 

where the diffusion coefficients are given by:  
 

 
2 1

1

1 2 1 1

2

1

W
) ( )( n nn n t D t





 �
ℓ ℓ

ℓ

, 
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Stochastic oscillators

All additively excited stochastic oscillators of  the form 
 

 
1

( ; ) ( ; ) ( ; ) ( ( ; ) ) ( ; )X t b X t X t g X t t         ɺɺ ɺ ,        (5) 
 

where ( )g i  is considered a continuous, non-linear (in general) function, attain the following 

state-space representation 
 

 
1 2
( ; ) ( ; )X t X t ɺ ,                    (6a) 

 

2 2 1 1 1
( ; ) ( ; ) ( ; ) ( ( ; ) ) ( ; )X t b X t X t g X t t          ɺ .          (6b) 

 

The corresponding pdf-evolution equation to the above oscillators, reads:  
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1 (
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
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   

 

 
 

  
      

 X

X X

X X

X X

x

x x x

x x

� �

i

i i
i i

         (7)  

Generalized FPK equations
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Stochastic linear oscillator

The one-time response pdf-evolution equation (genFPK-2D), corresponding to the linear oscil-
lator, reads  
 

( )
2

2

2

2 2 2
( )

( ) ( ) 2

21 1

( )
( ) ( , ) ( ) ( ) ( )

n

t

t t n

n n

nt

n n

t
f

f h t m t f
x x x



= =

∂∂  ∂ + + =  ∂ ∂ ∂∑ ∑ X

X X

x
x x x � ,  

 

where 
 

1 2( , )h t xx = ,      
2 1 1 2( , )h t x b xx = − − ,  

 

and the diffusion coefficients 
22 ( )n t� , have closed, linear and local forms. 

 

 This equation despite that it is linear, maintains the non-symmetric character of  the second 
order differential operator of  the non-linear pdf-evolution equations. To this end, is a good 
benchmark problem for numerical methods. 

Generalized FPK equations



• Partition of  Unity Finite Element Method (PUFEM), was introduced by I. Babuška 
and J. M. Melenk in 1996 (Melenk and Babuška, 1996; 1997), (Babuška, Banerjee, 
and Osborn 2003), (Oh, Kim, and Hong 2008).

PUFEM was chosen for the numerical solution of  the pdf-evolution equations, 
due to the following properties

 It is a meshless method, avoiding the complicated meshing process of  FEM, especially in the 
multidimensional set up.

The method resolves the problem of  interelement conformity (smoothness) –at any order
and in any space dimension (but the curse of  dimensionality remains and needs special 
treatment).

PUFEM is essentially a generalization of  the h, p and hp versions of  the classical FEM

05/07/2022 Partition of  Unity Finite Element Method 7

Partition of  Unity Finite Element Method
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PUFEM construction in 1D

 A uniform cover (patches of  equal lengths) of    ℝ ,  
1

K

k
k 

 , has the following layout:  
 

         
 

 A partition of  unity family of  functions  ( ) ( )
K

k k

s
C  i  ( s

C -PU), which subordinates to 

the cover  
1

K

k k 
 of  , has the following layout: 
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PUFEM construction in 1D
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PUFEM construction in 2D

 A uniform 2D-cover of  the global domain 1 2    ℝ ℝ ,   1 2

1 2
1 2

,

, 1

K K

k k
k k 

 , is obtained 

by the cartesian product of  two 1D-covers covering 1 , 2 . 
 

 A partition of  unity family which subordinates to the 2D-cover, is defined, by means of  the 

tensor product of  two 1D sC PU families: 
 

1 2 1 2 1 2

1 2

1 2 1 2 1 2( ) ( ) ( ) , (, , ) ( )
k k k k k kx x x x x x       . 

 

 A local basis on each 
1 2

:
k k k

    , by means of  the tensor product of  two local basis sets 

defined on 
1k

 , 
2k

 : 

1 2 1 2

1 2 1 2 1 2
, 1 2 1 2 1 2 , 1 1 1 2 2 2
( , ) ( ) ( ) , ( , ) 1(1)M ( ) , 1(1)M ( ),

k k k k

k k
b x x b x b x x x k k          . 

 

 An approximate basis in the global domain   is constructed by means of  the shape func-
tions (SF), given, for 

1 2
1 2 ,

( , )
k k

x x  , by: 
 

1 2 1 2

1 2 1 2 1 2, 1 2 , 1 2 , 1 2 1 1 1 2 2 2( , ) ( , ) ( , ) , 1(1)M ( ), 1(1)M ( ).
k k k k

k ku x x x x b x x k k         
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PUFEM construction in 2D

 A uniform cover of  the global domain, 

  1 2

1 2
1 2

,

, 1

K K

k k
k k 

 , has the following layout:  

 
 
 
 
 
 
 
 
 
 
 
 

 The reference 1D-PUF ( ) ɶ  is constructed 

by means of  a polynomial function.  
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Approximate PU-Representation

 The global approximation space PU
( )V   by Theorem 2.1 in (Melenk & Babuška, 1996), is 

dense in ( )C  , 1( )C   and 1( )H  .  

 The approximate global representation of  a function ( )f C  , in ( )PUV  , reads: 

1 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2 1

1 2
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1 1 1 1
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1 1 1 1

, 1
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f x x w u x x

w u x u x

w x
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 
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  

 

    
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

 

 

 
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   
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1 1 1 1
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u x x u x 
 


 

    
 

   
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The linear oscillator
The equation of  the linear oscillator reads 
 

2

0 0

( ; )
( ; ) 2 ( ; ) ( ; )

t
X t X t X t

m


    


  ɺɺ ɺ   

0 0( ; ) ( )X t X ɺ ɺ= ,    
0 0( ; ) ( )X t X  . 

 

 

We specify the parameters of  the oscillator as 
 

0.5 = ,   0 1 =     and    1m = ,  
 

corresponding to an underdamped oscillator. 
 

As excitation ( ; )t   we consider a nonzero-mean Ornstein-Uhlembeck (OU) process, with au-

tocorrelation function  
 

 
OU

( ) ( )

cor cor

| |
( , ) exp

D t s
C t s

  i i

 −  = −   
,    0.5m =  

 

where OUD  denotes the intensity of  the noise, and cor  the correlation time.  
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Corresponding pdf-evolution equation to 
the linear oscillator

The one-time response pdf-evolution equation (genFPK-2D), corresponding to the oscillator, 
reads  
 

( )
2

2

2

2 2 2
( )

( ) ( ) 2

21 1

( )
( ) ( , ) ( ) ( ) ( )

n

t

t t n

n n

nt

n n

t
f

f h t m t f
x x x



= =

∂∂  ∂ + + =  ∂ ∂ ∂∑ ∑ X

X X

x
x x x � ,  

 

where 
 

1 2( , )h t xx = ,      2

2 0 1 0 2( , ) 2h t x x  x = − − ,  
 

and the diffusion coefficients 
22 ( )n t� , setting 0a = −  and 2 1 2

0 (1 )b   /= − , are expressed as 
 

0

( )

Ξ( )Ξ(21 ) ( , ) )( n )) si ( (

t
a t s

t

e
t s b t s ds

b
t C�

i i

−

−= ∫ ,  

 

( )
0

( )

Ξ ( )2 ( )Ξ2 ( , ) sin( ( )) cos( )( ) ( )

t
a t s

t

e
t s a b t s b b t s ds

b
t C�

i i

−

− + −= ∫ . 
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Linear oscillator: Weak formulation

The approximation problem reads: For each [0, ]
f

t T , find PUf V  such that: PUg V    
 

      

2

1

1 2

2

2

21 2

2

,

( , ) ( )
[ ( ( , ) ( ) ) ( , ) ]( )

( , ) ( ) ( , ) )
(

(
) ( )

nn

n n

f t g
h t m t f t d

t x
g d

f t g f t g
d

x x
t

x x
t

 






 
  

 


   


   

 



x x
x x xx x

x x x x
x� �

 

 

and 
 

       
0
( )( , 0 ) ( ) ( )ff g d g d

 

  xx x x x x . 

 
 

 Since the unknown pdf  ( , )f tx , is defined on 2
ℝ , the problem is free of  boundary condi-

tions, with the understanding that the finite global domain  is considered, such that:  
 

 1f d


 ≃ . 

boundary integrals are eliminated due  
to the partition of  unity structure 

Numerical results
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System of  Equations

 Following a Bubnov-Galerkin approach in ( )PUV  , the weak problem results in a linear 

system of  the form: 
 

  ( ) ( ) ( )t t t=Aw B wɺ  

 
 The time discretization of  the problem is conducted by approximating the time derivative via a 

Crank-Nicolson scheme. The final system reads: 
 

  ( ) ( ) ( ) ( )
2 2

t t
t t t t 

 
 

     − + + = +       
A B w B A w , 

 

 where   is the time-step.  

 

 Initialization of  the numerical scheme requires to fit the PU-representation to the known 
initial density 

0
( )f x , obtaining the weights 0 0( )t=w w .  

 

 
Numerical results
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Initial fitting
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Steady state solution 

Numerical results
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Pdf  evolution

Numerical results
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Pdf  evolution

Numerical results
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Pdf  evolution
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The Duffing oscillator 

The equation of  the Duffing oscillator reads 
 

3

1 3( ; ) ( ; ) ( ; ) ( ; ) ( ; )mX t b X t X t X t t      ɺɺ ɺ+ + + =   
 

0 0( ; ) ( )X t X ɺ ɺ= ,    
0 0

( ; ) ( )X t X = ,  
 

We study the bistable case for 
 

  1m= ,    0.5b = ,    1 1 = −     and    3 1.1 = . 
 

 The excitation ( ; )t  , is considered a zero-mean Ornstein-Uhlembeck (OU) process  
 

 Initial value 
0( )X   is taken uncorrelated to the excitation. 
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FPK equation for the Duffing oscillator

Under the assumption of  white noise excitation, with autocorrelation function  
 

WN
WNΞ( )Ξ( ) ( , ) 2 ( )C t s D t s

i i
= − , 

 

the classical FPK equation, corresponding to the Duffing oscillator reads 
 

2 2

( ) ( ) WN ( )2
21

( ) ( , ) ( ) ( )t t n t t

nn

f h x t f D f
x x

X X X
x x x

=

∂ ∂ ∂ + =  ∂ ∂∑  

The drift coefficients in the above equation read: 
 

1 2( , )h x t x= ,      3
2 1 1 2 3 1( , )h x t x b x x = − − − .  
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Transient solution of  FPK
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Steady state solution of  FPK
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Level sets and moments
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Pdf-evolution equation for the Duffing oscillator 

The one-time response pdf-evolution equation, corresponding to the oscillator reads  
 

( )( (

2

2

2 2

( ) ) ( )

21 1

)( ) ( , ) ( ) ( ) .( ) ; ,t t n t t

n

n

nn n

f h x t f f
x x

f
x

t
X X XX

x xxx �
i
i

= =

∂ ∂ ∂ + = ⋅  ∂ ∂
 ∂ ∑ ∑  

 

 0(0) ( ) ( )f f
X X

x x= . 
 

In the above equation, the drift coefficients ( , )nh x t  reads: 
 

 1 2( , )h x t x= ,       3
2 1 1 2 3 1( , )h x t x bx x = − − −    

 

The diffusion coefficients are expressed as 
 
 

   
2 2

0

)( ) ( )
( ) ( ) ( ) ( )

( )2 2( ( , ) .); , ; , ,( ) (n

t

t

nC t st t ss df f
  




X X
x x� �

i i i

i

i

i i i
i i        = ∫  
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Evolution of  solution 
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Evolution of  solution 
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Evolution of  solution 
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Evolution of  solution 
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Evolution of  moments 



• Verification, via Monte Carlo simulation, of  the results concerning the 
Duffing oscillator 

• Investigation and better understanding of  the effect of  the correlation 
time and intensity of  the excitation 

• Study of  convergence and error analysis of  the partition of  unity finite 
element method and improvement of  the numerical scheme . 
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Future goals
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