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Problem under consideration

Our starting point is the initial-value problem (IVP) for a non-linear, two-dimensional system 
of  RDEs, reading:  
 

 ( ; ) ( ; ) , ( ; )n n nX t h t t t    Xɺ ,      
0

0( ; ) ( )n nX t X  ,      1, 2n  ,       (1) 
 

where  
 

the overdot in (1) denotes differentiation with respect to time,  
 

  denote the stochastic argument,  
 

1 2
( ( ) , ) , ( ( ) , )h t t h t tx x  are continuous, deterministic functions. 

 

Initial value 0 ( )X  and excitation ( , )iΞ  are considered correlated and jointly Gaussian, 

which constitute the data of  the system.  
 

 The probabilistic structures of  the initial value and excitation, are completely defined  

by means of  their mean vectors 0
X

m  and ( ) ( )tm
iΞ

, autocovariances matrices 0 0
X X

C , 

( ) ( )C
i iΞ Ξ

 and the cross-covariance matrix 0 ( )X
C

iΞ
.  
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs

Generalized FPK equations

 To study the probabilistic structure of  the response ( ; )t X , of  the system (1), equations 

with respect to the one-time probability density function (pdf) 
1 2( ) ( ) ( )( ) ( )X t X t tf f

X
x x  are 

formulated. 
 

The one-time pdf-evolution equation (genFPK) (Mamis, Athanassoulis and Kapelonis, 2019)

(Mamis, 2020) corresponding to the IVP (1), reads: 
 

    
2

1 2 1 2

1

22 2 2

( ) ( ) ( )

1 1 1

( )
( ) ( ) ( ) .( , ) ( ) ; ,

t t t t

n

n n

n nn n n

n
f f fq x t x

x
f

x
t

x  

 
       

     XX X X
x x x�

i
i    (2a) 

 

 Eq. (2) is a generalization of  the classical Fokker-Planck-Kolmogorov (FPK) equation (will 
be presented below), which is a linear pde. To this end, Eq. (2a) is also called generalized 
FPK (genFPK).  
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs
The one-time pdf-evolution equation (genFPK) 
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The quantities 
1 2 ( ) ( ) ; ,n n x tf  X

�
i
i  are called generalized diffusion coefficients, given by:  
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 The diffusion coefficients  
1 2n n� ⋯  are also non-locally dependent on the unknown pdf, 

through its time-history, from the initial time up to the current time t  
 

 The diffusion coefficients  
1 2n n� ⋯  are non-linearly dependent on x , by means of  the func-

tions  0

2 1

( )X

n


�

i

ℓ
⋯  and  

2 1

( ) ( )

n

 
�

i i

ℓ
⋯ . 

Generalized FPK equations
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs

In the derivation of  the pdf-evolution equation (2a, b), in place of  the functions  0

2 1

( )X

n


�

i

ℓ
⋯ and 

 
2 1

( ) ( )

n

 
�

i i

ℓ
⋯ , the following quantities emerge: 
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 Using the initial system of  RDEs, homogeneous linear systems of  ODEs are formulated 

with respect to the quantities 
0

2 1nV
X

ℓ
, 

2 1

( )s

nV ℓ

Ξ , giving the expressions:   
 

    2 02 1 1 0

0

( ; ) ( ; ) ,n n

t t

t t
V t      

X
J X

ℓ ℓ
i i ,     2 1 2 1

( )
( ; ) ( ; ) ,

t t

s

s

n snV t   
 

 J X
ℓ ℓ

i i
Ξ , 

where J  is the Jacobian matrix and   denotes the state-transition matrix.  

Variational 
Derivatives 

Generalized FPK equations
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Generalized FPK equation corresponding to 
a two-dimensional system of  RDEs
 Decomposing the Jacobian matrix J in two parts: 

 

      J R Δ⋯ ⋯ ⋯ , 
 

where        R J⋯ ⋯E  (mean value) and           Δ J J⋯ ⋯ ⋯E  (fluctuations), we  

obtain: 
 

     ( )     J R B⋯ ⋯ ⋯Φ Φ Φ ,          1( )         B R Δ R⋯ ⋯ ⋯ ⋯Φ Φ . 
 

Introducing appropriate current-time approximations for the matrices  ( )B ⋯Φ : 
 

  0
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t
n

t

t

X

n

x tf ft t t
    

     
  


X

X
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2 1

2 1

( ) (

( ) ( )

)
x( ) e p , ( ) ,; (, ), t

s
n

t

s

n

x t ft t sf s               
X X

Δ x R�
i

i

i i

ℓ

ℓ

ii iΦ .       (3b)  

    R ⋯Φ  contains moments of  the pdf  up to the current time t . The unknown moments 

at the current time are determined numerically by extrapolation, using iterations. 

Generalized FPK equations
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Classical FPK equation corresponding to a 
two-dimensional system of   RDEs
Under the assumption of  zero-mean, delta-correlated Gaussian excitation (Gaussian white 

noise): 
 

 WN

( ) ( )
( , ) 2 ( ) ( )t s t t s C D

i iΞ Ξ
,    where    ( )D  is the noise intensity matrix, 

 

the classical Fokker-Planck-Kolmogorov equation (FPK) (Pugachev and Sinitsyn, 2002) corre-

sponding to the system (1) reads: 
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where the diffusion coefficients are given by:  
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Stochastic oscillators

All additively excited stochastic oscillators of  the form 
 

 
1

( ; ) ( ; ) ( ; ) ( ( ; ) ) ( ; )X t b X t X t g X t t         ɺɺ ɺ ,        (5) 
 

where ( )g i  is considered a continuous, non-linear (in general) function, attain the following 

state-space representation 
 

 
1 2
( ; ) ( ; )X t X t ɺ ,                    (6a) 

 

2 2 1 1 1
( ; ) ( ; ) ( ; ) ( ( ; ) ) ( ; )X t b X t X t g X t t          ɺ .          (6b) 

 

The corresponding pdf-evolution equation to the above oscillators, reads:  
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Stochastic linear oscillator

The one-time response pdf-evolution equation (genFPK-2D), corresponding to the linear oscil-
lator, reads  
 

( )
2

2

2

2 2 2
( )

( ) ( ) 2

21 1

( )
( ) ( , ) ( ) ( ) ( )

n

t

t t n

n n

nt

n n

t
f

f h t m t f
x x x



= =

∂∂  ∂ + + =  ∂ ∂ ∂∑ ∑ X

X X

x
x x x � ,  

 

where 
 

1 2( , )h t xx = ,      
2 1 1 2( , )h t x b xx = − − ,  

 

and the diffusion coefficients 
22 ( )n t� , have closed, linear and local forms. 

 

 This equation despite that it is linear, maintains the non-symmetric character of  the second 
order differential operator of  the non-linear pdf-evolution equations. To this end, is a good 
benchmark problem for numerical methods. 

Generalized FPK equations



• Partition of  Unity Finite Element Method (PUFEM), was introduced by I. Babuška 
and J. M. Melenk in 1996 (Melenk and Babuška, 1996; 1997), (Babuška, Banerjee, 
and Osborn 2003), (Oh, Kim, and Hong 2008).

PUFEM was chosen for the numerical solution of  the pdf-evolution equations, 
due to the following properties

 It is a meshless method, avoiding the complicated meshing process of  FEM, especially in the 
multidimensional set up.

The method resolves the problem of  interelement conformity (smoothness) –at any order
and in any space dimension (but the curse of  dimensionality remains and needs special 
treatment).

PUFEM is essentially a generalization of  the h, p and hp versions of  the classical FEM
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Partition of  Unity Finite Element Method
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PUFEM construction in 1D

 A uniform cover (patches of  equal lengths) of    ℝ ,  
1

K

k
k 

 , has the following layout:  
 

         
 

 A partition of  unity family of  functions  ( ) ( )
K

k k

s
C  i  ( s

C -PU), which subordinates to 

the cover  
1

K

k k 
 of  , has the following layout: 
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PUFEM construction in 1D
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PUFEM construction in 2D

 A uniform 2D-cover of  the global domain 1 2    ℝ ℝ ,   1 2

1 2
1 2

,

, 1

K K

k k
k k 

 , is obtained 

by the cartesian product of  two 1D-covers covering 1 , 2 . 
 

 A partition of  unity family which subordinates to the 2D-cover, is defined, by means of  the 

tensor product of  two 1D sC PU families: 
 

1 2 1 2 1 2

1 2

1 2 1 2 1 2( ) ( ) ( ) , (, , ) ( )
k k k k k kx x x x x x       . 

 

 A local basis on each 
1 2

:
k k k

    , by means of  the tensor product of  two local basis sets 

defined on 
1k

 , 
2k

 : 

1 2 1 2

1 2 1 2 1 2
, 1 2 1 2 1 2 , 1 1 1 2 2 2
( , ) ( ) ( ) , ( , ) 1(1)M ( ) , 1(1)M ( ),

k k k k

k k
b x x b x b x x x k k          . 

 

 An approximate basis in the global domain   is constructed by means of  the shape func-
tions (SF), given, for 

1 2
1 2 ,

( , )
k k

x x  , by: 
 

1 2 1 2

1 2 1 2 1 2, 1 2 , 1 2 , 1 2 1 1 1 2 2 2( , ) ( , ) ( , ) , 1(1)M ( ), 1(1)M ( ).
k k k k

k ku x x x x b x x k k         
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PUFEM construction in 2D

 A uniform cover of  the global domain, 

  1 2

1 2
1 2

,

, 1

K K

k k
k k 

 , has the following layout:  

 
 
 
 
 
 
 
 
 
 
 
 

 The reference 1D-PUF ( ) ɶ  is constructed 

by means of  a polynomial function.  
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Approximate PU-Representation

 The global approximation space PU
( )V   by Theorem 2.1 in (Melenk & Babuška, 1996), is 

dense in ( )C  , 1( )C   and 1( )H  .  

 The approximate global representation of  a function ( )f C  , in ( )PUV  , reads: 
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The linear oscillator
The equation of  the linear oscillator reads 
 

2

0 0

( ; )
( ; ) 2 ( ; ) ( ; )

t
X t X t X t

m


    


  ɺɺ ɺ   

0 0( ; ) ( )X t X ɺ ɺ= ,    
0 0( ; ) ( )X t X  . 

 

 

We specify the parameters of  the oscillator as 
 

0.5 = ,   0 1 =     and    1m = ,  
 

corresponding to an underdamped oscillator. 
 

As excitation ( ; )t   we consider a nonzero-mean Ornstein-Uhlembeck (OU) process, with au-

tocorrelation function  
 

 
OU

( ) ( )

cor cor

| |
( , ) exp

D t s
C t s

  i i

 −  = −   
,    0.5m =  

 

where OUD  denotes the intensity of  the noise, and cor  the correlation time.  
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Corresponding pdf-evolution equation to 
the linear oscillator

The one-time response pdf-evolution equation (genFPK-2D), corresponding to the oscillator, 
reads  
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where 
 

1 2( , )h t xx = ,      2

2 0 1 0 2( , ) 2h t x x  x = − − ,  
 

and the diffusion coefficients 
22 ( )n t� , setting 0a = −  and 2 1 2

0 (1 )b   /= − , are expressed as 
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Linear oscillator: Weak formulation

The approximation problem reads: For each [0, ]
f

t T , find PUf V  such that: PUg V    
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and 
 

       
0
( )( , 0 ) ( ) ( )ff g d g d

 

  xx x x x x . 

 
 

 Since the unknown pdf  ( , )f tx , is defined on 2
ℝ , the problem is free of  boundary condi-

tions, with the understanding that the finite global domain  is considered, such that:  
 

 1f d


 ≃ . 

boundary integrals are eliminated due  
to the partition of  unity structure 

Numerical results
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System of  Equations

 Following a Bubnov-Galerkin approach in ( )PUV  , the weak problem results in a linear 

system of  the form: 
 

  ( ) ( ) ( )t t t=Aw B wɺ  

 
 The time discretization of  the problem is conducted by approximating the time derivative via a 

Crank-Nicolson scheme. The final system reads: 
 

  ( ) ( ) ( ) ( )
2 2

t t
t t t t 

 
 

     − + + = +       
A B w B A w , 

 

 where   is the time-step.  

 

 Initialization of  the numerical scheme requires to fit the PU-representation to the known 
initial density 

0
( )f x , obtaining the weights 0 0( )t=w w .  

 

 
Numerical results
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Initial fitting
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Steady state solution 

Numerical results
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Pdf  evolution

Numerical results
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Pdf  evolution

Numerical results



05/07/2022 Numerical results 24

Pdf  evolution
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The Duffing oscillator 

The equation of  the Duffing oscillator reads 
 

3

1 3( ; ) ( ; ) ( ; ) ( ; ) ( ; )mX t b X t X t X t t      ɺɺ ɺ+ + + =   
 

0 0( ; ) ( )X t X ɺ ɺ= ,    
0 0

( ; ) ( )X t X = ,  
 

We study the bistable case for 
 

  1m= ,    0.5b = ,    1 1 = −     and    3 1.1 = . 
 

 The excitation ( ; )t  , is considered a zero-mean Ornstein-Uhlembeck (OU) process  
 

 Initial value 
0( )X   is taken uncorrelated to the excitation. 
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FPK equation for the Duffing oscillator

Under the assumption of  white noise excitation, with autocorrelation function  
 

WN
WNΞ( )Ξ( ) ( , ) 2 ( )C t s D t s

i i
= − , 

 

the classical FPK equation, corresponding to the Duffing oscillator reads 
 

2 2

( ) ( ) WN ( )2
21

( ) ( , ) ( ) ( )t t n t t

nn

f h x t f D f
x x

X X X
x x x

=

∂ ∂ ∂ + =  ∂ ∂∑  

The drift coefficients in the above equation read: 
 

1 2( , )h x t x= ,      3
2 1 1 2 3 1( , )h x t x b x x = − − − .  
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Transient solution of  FPK



05/07/2022 Numerical results 28

Steady state solution of  FPK



05/07/2022 Numerical results 29

Level sets and moments
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Pdf-evolution equation for the Duffing oscillator 

The one-time response pdf-evolution equation, corresponding to the oscillator reads  
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 0(0) ( ) ( )f f
X X

x x= . 
 

In the above equation, the drift coefficients ( , )nh x t  reads: 
 

 1 2( , )h x t x= ,       3
2 1 1 2 3 1( , )h x t x bx x = − − −    

 

The diffusion coefficients are expressed as 
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Evolution of  solution 
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Evolution of  solution 
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Evolution of  solution 
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Evolution of  solution 
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Evolution of  moments 



• Verification, via Monte Carlo simulation, of  the results concerning the 
Duffing oscillator 

• Investigation and better understanding of  the effect of  the correlation 
time and intensity of  the excitation 

• Study of  convergence and error analysis of  the partition of  unity finite 
element method and improvement of  the numerical scheme . 
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Future goals
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