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Statistical inference and SDE’s

Figure: Multiscale modelling of polymer solid interfaces [Johnston and Harmandaris,
2013]

Methods for statistical inference of stochastic differential equations have
become especially important lately that the enhanced availability of data
and computational power allows for rich datasets from different scales
and mechanisms of system interactions.
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Stochastic Differential Equations

Let (Ω,F ,P) be a probability space and let us consider the system of SDE’s :

ẋ( t ; ω ) = K ( x(t;ω), y(t;ω) )

ẋ( 0 ; ω ) = x 0(ω ), t > 0, ω ∈ Ω

where:
x(t;ω) : the response, y(t;ω) : the excitation.

A data driven approach: Given data from x(t, ω) (and y(tω)) we want to find
the operator K and the characteristics of random noise y(t, ω).

Many methods have been developed for the statistical inference of diffusion
processes that follow the Markovian property, have independent increments, and
are completely characterized by their transition probability e.g. approximate,
pseudo likelihood (Euler, Eulerian, local linearization) and simulated likelihood
methods.
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Random Differential Equation

Figure: The low -pass Gaussian filter excitation covariance Cyy (τ) = σ2exp(−a(τ))2 for σ = 1

In many systems encountered in engineering, finance, and biology when
the correlation time of the excitation is of the same order of magnitude as
the system’s relaxation time it is not a plausible simplification to assume
that the system is excited by a delta correlated process (white noise).

Such cases can be more realistically modeled by correlated random
functions, also known as colored random noises.

SDE’s with colored random noise excitation are also referred to as
Random Differential Equetions (RDEs).

5 / 29



Preliminaries RE Moment Equations RE Inference Transient MD Overdamped GLE References

Response- Excitation (RE) theory

The Response-Excitation theory for RDEs :

Proposes the joint treatment of the probabilistic structure of the response
and the excitation, leaving the space for their stochastic dependence to be
determined during the solution of the problem
Involves two separate time variables- one for the excitation and one for
the response
Uses functional averages over the response realizations and the excitation

References e.g.: Sapsis and Athanassoulis [2008], Venturi, Sapsis, Cho,

and Karniadakis [2012], Athanassoulis, Tsantili, and Kapelonis [2015],

Tsantili [2014], Mamis, Athanassoulis, and Kapelonis [2019].

In the context of the Response-Excitation theory two-time RE moment

equations were developed along with suitable closures for non-linear

systems.

References e.g.: Athanassoulis, Tsantili, and Kapelonis [2013], Tsantili
[2014], Athanassoulis, Tsantili, and Kapelonis [2015], see also Joo and
Sapsis [2016] .
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Outline

Review of the derivation of the two-time RE moment equations.

Present a Gaussian two-moment approach for the statistical
inference of RDE’s using the two-time RE moment equations.

Examine the use of simple, surrogate models for the data-driven
description of non-Markovian processes.
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RDEs under colored noise excitation

We consider random differential equations:

ẋ( t ; ω ) = K ( x(t;ω), y(t;ω) )

x( 0 ; ω ) = x 0(ω )

Where K is a linear or non-linear operator with polynomial non-linearities,
y(t;ω) is a colored noise excitation, e.g.:

A shifted OU (sOU) process with my = 0 and thus Cyy = Ryy , where :

R y y (t, s) = σ2 · exp (−α · |t − s|) · cos (ω0 · (t − s))

with correlation time:

τ corr
y y =

α

α 2 + ω 2
0

+
e − απ/( 2ω 0 )

1 − e − απ/(ω 0 )
· 2ω 0

α 2 + ω 2
0

, ω 0 > 0

A low pass Gaussian Filter (lpGF):

R y y (t, s) = σ2 · exp
(
−α(t − s)2

)
τ corr
y y =

√
π/( 2

√
α )

or equivalently for Cxy (t, s) = Rxy (t, s)−mx(t)my (s) and
Cxx(t, s) = Cxx(t, s)−mx(t)mx(s)
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RDEs under colored noise excitation

We consider random differential equations:

ẋ( t ; ω ) = K ( x(t;ω), y(t;ω) )

x( 0 ; ω ) = x 0(ω )

Where K is a linear or non-linear operator with polynomial non-linearities,
y(t;ω) is a colored noise excitation, e.g.:

The methodology proposes the derivation of a system of four moment equations
directly from the dynamical system:

One-time diagonal moment equations for the mx(t) and Rxx(t)

Two-time moment equations for Rxy (t, s) and Rxx(t, s)

or equivalently for Cxy (t, s) = Rxy (t, s)−mx(t)my (s) and
Cxx(t, s) = Cxx(t, s)−mx(t)mx(s)
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Moment equations for linear RDEs

From the linear RDE:

ẋ(t ; ω) = −A · x(t ;ω) + B · y(t ; ω)
The solution of the two-time RE moment system is given by:

mx (t) = eA·t · B ·
t∫

t0

my (s) ·e−A·sds + eA·(t−t0) ·mx0 , ∀ t ≥ t0

R x y (t, s) = eA·t ·
t∫

t0

B · R y y (t1, s) ·e−A·t1dt1+ eA·(t−t0)·mx0 ·my (s) , ∀ t ≥ t0, ∀ s ≥ t0

R x x (t, s) = B · eA·(s+t)
t∫

t0

(
e−A·t1 ·

s∫
t0

B · R y y (t2, t1) ·e−A·t2dt2

)
dt1+

eA·(t+s−t0)B ·mx0 ·
t∫

t0

my (t1) e
−A·t1dt1+

eA·(t+s−t0) · B ·mx0 ·
s∫

t0

my (s1) · e−A·s1ds1 + eA·(t+s−2·t0) · R x0x0 ,

The equation for R x x(t, t) is obtained taking the limit s → t . 9 / 29
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Remark on RE moment equations of non-linear systems

When K(x(t, ω),Y (t, ω)) is non-linear the (truncated) moment system is
not closed and, thus, some closure scheme should be invoked.

For non-linear systems a suitable two-fold closure (moment and time
closure) closure was introduced in Athanassoulis et al. [2013], Tsantili
[2014], Athanassoulis et al. [2015],.

For a mono-stable scalar system, the moment closure was obtained by
applying the standard Gaussian closure to the two-time RE moments. For
a bi-stable cubic non-linear half oscillator a bi-Gaussian moment closure
scheme was discussed in [Tsantili, 2014]. The time closure was achieved
by using an exact non-local (in time) condition for the one-time moments.
Athanassoulis et al. [2013], Tsantili [2014], Athanassoulis et al. [2015]

A moment-equation-copula-closure method for non linear vibrational
systems subjected to correlated noise was introduced in Joo and Sapsis
[2016]

10 / 29



Preliminaries RE Moment Equations RE Inference Transient MD Overdamped GLE References

Maximum Likelihood of discrete observations

Let us denote a random process X (t) = x(t;ω) and consider the RDE :

Ẋ ( t ) = K
(
X (t), Y (t, θ(2)); θ(1)

)
Ẋ ( 0 ; ) = X 0, t > 0, ω ∈ Ω

Let us assume a parametric K with parameters θ(1) and let θ(2) be
the parameters of the random excitation. We assume that
ϕ = {θ(1), θ(2)} lay on the parametric space Φ.

Given a discrete sample set dN = {di = X (ti )}Ni=1 associated to the
process X (t) we can infer the model parameters ϕ by maximizing
the (exact) likelihood function

L(θ;dN) =p(dN ;ϕ) ,

where p(X (t1), . . . ,X (tN);ϕ) denotes the finite-dimensional joint
density of the sample X (t1), . . . ,X (tN).
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MLE RE Gaussian approximation

If we consider a Gaussian approximation G(t) of the original process
X (t). The exact likelihood function is approximated by the likelihood
function that corresponds to a multivariate Gaussian density.

Within this approximation we consider the following observation equation
to incorporate the measurement error

D(t) = G(t) + ϵ(t) t > 0.

Given the observed data the corresponding likelihood function is

L(ϕ|dN) = (2π)−N/2|Σ(ϕ)|−1/2 exp
[
−(1/2)(d− µ(ϕ))T[Σ(ϕ)]−1(d− µ(ϕ))

]
,

where µ(ϕ) = (m(t1), . . . ,m(tN)), Σ(ϕ) = V(ϕ) +Σϵ and V(ϕ) is the
variance-covariance matrix with elements :

[V]kl = v(tk , tl) = Rxx(tk , tl) − mx(t)mx(s), k, l = 1, . . .N

The elements are obtained by the solution of two time RE
moment that incorporate all the history of the excitation.
The system parameters and the correlation structure of the
response appear in the Likelihood function.
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MLE 2D RE Gaussian approximation

Given observed data d (1) = {X1:N} = {X1, . . . ,XN} for the response, and
d (2) = {Y1:N} = {Y1, . . . ,YN} for the excitation we are given the choice to
consider the two-dimensional process Ψ = [X (t) Y (t)]tr with mean

µ(ϕ) = E [Ψ] = [µX (t) µY (t)]
tr ,

and covariance

Σ(ϕ) = E [(X(t)− µX (t))⊗ (Y(s)− µY (s))] =

[
vXX (t, s) vXY (t, s)
vXY (t, s) vYY (t, s)

]
.

Given the observed data the Likelihood will be given by:

Lc(ϕ|d(1), d(2)) =
1

(2π)2N |VN |
exp

{
−1

2
(Ψ1:N − µN)

tr V−1
N (Ψ1:N − µN)

}
where µN = µN(ϕ) is the vector with 2N elements

µN = [µtr (t1) . . . µtr (tN)]
tr

and VN = VN(ϕ) is a 2N × 2N matrix with block-elements

Σ(ti , tj) =

[
vXX (ti , tj) vXY (ti , tj)
vXY (ti , tj) vYY (ti , tj)

]
, i , j = 1, . . . ,N.
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Benchmarks in steady state

In what follows we shall consider the long-time, statistical equilibrium
limit of the system and infer the system parameter there for some
benchmark examples.

We obtain sample paths of the excitation y(t, ω) considering the K-L
expansion [Tsantili and Hristopulos, 2016] of its covariance Cyy (t, s), then
we solve the linear scalar RDE:

ẋ(t ; ω) = −A · x(t ;ω) + B · y(t ; ω)

To learn the model parameters we estimate the variance-covariance matrix
of the Gaussian likelihood function from the long-time limits of analytical
solutions [Tsantili, 2014] of the two-time RE moment equations.
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Benchmarks in steady state - OU process

Figure: a. Covariance of the OU process for different values of the correlation length
tcorr = 1/α. b. Long-time stationary response of the linear system for
(A,B, σ) = (0.3, 1.3, 0.1)

:
The long time response correlation (here for my = 0,Cx x(t, s) = Rx x(t, s)) of a
linear system excited by an OU process

C (∞)
x x (t, s) =

B2 · σ2

(α− A)2 · (A+ α) 2×(−eA·|t−s|α · (α2 − A2)

A
)+e−α|t−s| (−α2+A2))
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Benchmarks in steady state -OU process

Parameter A B α
Exact values 0.3 1.3 0.1
OU Excitation 0.297 1.26 0.108

95% CI [0.276, 0.32] [1.206, 1.321] [0.099, 0.117]

Table: Approximation of the a linear system with OU excitation, using the Gaussian
MLE and solving the two-time moment equations. The confidence intervals (CI) for
the obtained parameters are also denoted. Results from 100 paths of 100 data points
of observation each.
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Benchmarks in the steady state - Shifted OU process

Figure: a. Covariance for the shifted OU process excitation for different values of α
and ω0 = 0.5.b. Long-time stationary response of the linear system for
(A,B, ω0, σ) = (0.3, 1.3, 0.5, 0.1) .

C (∞)
x x (t, s) =

B2 · σ2(
(α− A)2 + ω 2

0

)
·
(
(A+ α) 2 + ω 2

0

)×[
−eA·|t−s|α ·

(
(α2 − A2) + ω 2

0

)
A

+ e−α·| t−s |×[
(−(α2 − A2) + (ω0)

2) · cos (ω0 · | t − s |) +2 · α · ω0 · sin (ω0 · | t − s |)]] . 17 / 29
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Benchmarks in the steady state - Shifted OU process

Parameter A B α ω0

Exact values 0.3 1.3 0.1 0.5
OU Excitation 0.3003 1.3886 0.0985 0.50144

95% CI [0.279, 0.322] [1.284, 1.374] [0.092, 0.106] [0.493, 0.510]

Table: Approximation of the linear system for shifted OU excitaion with
(A,B, α, σ, ω0) = (0.3, 1.3, 0.1, 0.1, 0.5) using the Gaussian MLE and solving the
two-time moment equations . The confidence intervals (CI) for the obtained
parameters are also denoted. Results from 100 paths of 100 data points of observation
each.
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Benchmarks in the steady state - Low Pass Gaussian Filter

Figure: a. Covariance of the lpGF process for different values of the parameter α and
for ω = 0.5. b. Long-time stationary response of the linear system for
(A,B, α, σ) = (0.3, 1.3, 1, 0.1).

C
(∞)
x x (t − s) =

=
√
π

4
√
a
· B2·σ2

(− A)
· e

A2

4·α ×
(
eA·(s−t) ·

(
erf
(√

α · (s − t) + A
2·
√
α

)
+ 1
)

+

+ eA·(t−s)
(
erf
(√

α · (t − s) + A
2·
√
a

)
+ 1
)
)
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Benchmarks in the steady state - Low Pass Gaussian Filter

Parameter A B α
Exact values 0.3 1.3 1
OU Excitation 0.301 1.335 0.98

95% CI [0.2802, 0.322] [1.307, 1.364] [0.938, 1.0194]

Table: Approximation of a low pass Gaussian Filter excitation with
(A,B, α, σ) = (0.3, 1.3, 1, 0.1) using the Gaussian MLE and solving the two-time
moment equations . The confidence intervals (CI) for the obtained parameters are also
denoted. Results from 100 paths of 100 data points of observation each.
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Generalized Langevin Equation (GLE)

Let us now consider the GLE describing the movement of one
particle in a box

dQt = Ptdt,
dPt
dt = −α1Qt − [η2

∫ t
0 exp ( t−s

τ )Psds] + F rn
t , t > 0,

Qt=0 = q0,Pt=0 = p0,

where the auto-correlation of the random force F rn is given by

RF rn(t − s) = β−1 η2 exp (
t − s

τ
), t > s.

We use the extended dynamics of the GLE to obtain
approximate sample paths Q̄t , P̄t of Qt ,Pt .
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Time-dependent potential for the transient -time dynamics

From the obtained data we infer the parameters of a (Markovian) Langevin
equation with a time-dependent potential and a white noise excitation
[Baxevani et al.]:

dQ̃t = P̃tdt

dP̃t = −D(t; θ(1))B(Q̃t , θ(2))dt − γP̃tdt + σdWt , t > 0,

Q̃t=0 = p0 P̃t=0 = p0 .

Let us denote the total force of the GLE as

Ftot(Qt) = −α1Qt − [η2

∫ t

0

exp (
t − s

τ
)Psds] + F rn

t ,

and let
FCG (Q, t;ϕ) = −D(t; θ(1))B(Qt , θ

(2)) .

To estimate the parameters ϕ = {θ(1), θ(2)} we solve the Force Matching
problem given by

argminϕ
1

nt

1

np

np∑
n=1

nt∑
i=1

|Ftot(Qti ,Pti , ti )− FCG (Qti , ti , ϕ)|
2 ,
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Transient time mean values

Figure: Comparison of the (sample) mean values of Qt and Pt of the GLE with the
sample mean values Q̃t , P̃t of the Langevin Equation with time-dependent
potential(for np = 2000 paths and nt = 100 data points). We consider two different
correlation times of F rn, i.e. for τ = 0.5 (upper panel) and τ = 0.1 (lower panel). The
other parameters are α = 0.1, η = 1, β = 1000, q0 = 0, p0 = 0.1.
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Transient time variances

Figure: Same as in Figure 6 for the variances. A longer interval of the transient state
of the GLE system dynamics is well approximated by the Langevin equation for smaller
correlation time.
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Overdamped GLE

We propose to model the overdamped equation governing the evolution
of Q using a RDE with colored noise excitation.

Given the data for Q obtained by the GLE we will learn the parameters of
a linear RDE with colored noise excitation Yt{

dQ̂t = −A Q̂tdt + B Yt

Q̂t=0 = q0

We consider the long-time limit where the system has reached the steady
state.

We learn the system parameters and the parameters of the colored noise
using the MLE RE Gaussian approximation.
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RE Inference of the overdamped GLE

Figure: a. Comparison of the variance of Q(t) for τ = 0.1 (left) and τ = 0.5 (right)

with the long time variance of Q̂ obtained by the the MLE RE Gaussian
Approximation. The parameter of the linear model for Q̂t and of the shifted OU
process Yt are (A,B, α, ω0, σ) = (0.21, 0.361, 0.05, 0.34, 0.12) and
(A,B, α, ω0, σ) = (0.241, 0.509, 0.406, 0.402, 0.1), all the parameters were learned
from 100 paths of 100 data points of observation each obtained by the GLE.
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Summary and directions for future work

We presented a MLE Gaussian approximation scheme that uses the
two-time response excitation moments of colored RDEs.

We presented some benchmark examples for linear systems and different
correlations of the excitation for which analytic solutions of the two-time
moment system exist.

We discussed a model that approximates the GLE with a Langevin
equation having a time-dependent potential instead.

We discussed a model that could use instead a colored noise linear RDE
to model the overdamped limit of the position Q.

We shall use the MLE RE Gaussian approximation scheme to infer the
parameters of non-Markovian systems in the transient state.

For non-linear RDEs, some closure parameters could be learned by data
during the solution of the MLE RE Gaussian approximation scheme.
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