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Sensitivity of schemes |: Shocks and interfaces are
related to Nonlinear problems with non unique weak
solutions

Typical models include nonlinear evolution PDEs

ue(t) + A(u(t)) =0
Due to the singular structure of the solutions existence and uniqueness of
(weak) solutions is very subtle

» (1) non-uniqueness of weak solutions - Conservation Laws, Hamilton
Jacobi, Equations describing phase separation, ...

> (2) selection criteria for the physical relevant solution - CL: entropy
solution, HJ: viscosity solution, geometric laws for propagating
interfaces



A typical example: Scalar Conservation Laws

u(x,t) + divF (u(z,t)) =0, z€ R t>0.
Unique entropy solution:
n(u)e +divS(u) <0, in D'

The entropy solution is characterized as the limit of viscosity approximations
("Viscosity solution”) :
u® — u.

ug(z,t) + divF (u(z,t)) = eAu(z,t), x € R t>0.

> Relation to the design of schemes: artificial diffusion



Numerical schemes

“Reasonable” schemes do not perform always as we expect.
» oscillations (Ex. 1)
> convergence to the “wrong” solution (Ex. 2)

WHY?



Numerical schemes induce their own physics...

“Reasonable” schemes do not perform always as we expect.
» each scheme corresponds to an approximation of the PDE

v (8) + A" (1)) = Bu(h,v" (1)),

where By, (h,v"(t)) is a differential operator acting on »" not always
clear.

» this is a PDE that models the numerical scheme



Oscillatory schemes

//

» Limit dynamics of such schemes refs: von Neumann 1943-44,
Goodman and Lax 1988, Hou and Lax 1991, Brenier and Levy 2000
computational studies.

» PDEs: development of the theory of small dispersion limits (Lax,
Levermore, Venakides,...)



Introducing artificial diffusion in the scheme

- -




Ex. 2: But still computations can be subitle...

> up+ f(u)a: = QUgy + bumzan

» Transport, diffusion and dispersion

[LeFloch, Rohde 2000]



Part Il ; Statistics : Measure
Valued Solutions



Why we would like to compute/study such solutions?

» The behaviour of approximations (and in some important cases
of the “solution”) is not certain...

» The data might contain uncertainties : statistics for the
corresponding solutions

» Uncertainty Quantifiaction



Statistics for an assembly of initial data
Consider the nonlinear conservation law:

ug(z,t) +divF (u(z,t)) =0, x € R%t>0.
To fix ideas, consider different solutions u;, j = 1,...,J, which
correspond to different initial data u?-,j =1,...,J. Assume that all u;
satisfy the above PDE.
Is it possible to derive some kind of statistical inference without
solving the PDE with all the different data (solving the PDE .J times)?

It is natural to consider measures of the form
1 J
j Z 5uj(m,t) .
j=1

» Can we consider solutions of the PDE which are measure
valued?

» What type of measures should we consider?

» Is it possible to have a theoretical framework which will support
our computational approach?



Young measures

Let M(R™) be the set of all signed Radon measures on R™. We
denote by M (R™) the set of all positive Radon measures and by
MP(R™) the set of all probability measures over B(R™) that is,

MF(R™) = {p € M*(R™), p(R™) = 1}.

We call young measure a weakly* measurable mapping from €2 into
MP(R™).The set of all young measures is denoted by Y (Q,R™).



Young Measures |l

Then

Let u; a bounded sequence of approximations in L> (2, R™).
) H = l ty

there exists a subsequence and a measure i € Y(Q,R™
(z,t) € Q, such that for G € C(R™),

Glu) =G where  Glavt) = (Gupies) = [ GNdiies(N).

>
(Gobute) = | GOWMBa() = Glu(a. 1)

(id, 5u(m,t)> = /m )\d5u(m7t)(>\) = u(z,t)



Measure-valued solutions (Di Perna)

A measure u € Y(Q,R™) is said to be a measure-valued solution of
the conservation law if it satisfies the expression

/ ((id, Hat) - O+ (fs oo t) - d)x)dzdt + /uo -0, z)dxz =0, (0.1)

Q R

forall ¢ € C5°(9).
This definition is an extension of weak solutions to allow measure
valued solutions.

Similarly, a young measure p € Y (£2,R™) which fulfils the additional
relation

/ (0 pa) - &1+ (Qu i) - b )dardt + / o - 6(0,2)de >0, (0.2)

Q R

for all ¢ € C§°(€2) with ¢ > 0 is called an entropy measure-valued
solution of the conservation law.



Questions / Problems

» Measure valued solutions allow for a statistical analysis of the
problem

» Computational methods tailor made for computing measure
valued solutions...

» What do we compute?? We need a solid stability framework to
justify the computations.

» Available results concentrated to initial data of the form
5u0(m).

Uniqueness is lost for general measure valued initial data

» The definition of Entropy Measure Valued solutions has to be
enhanced in order to allow a more consistent theory with
non-atomic initial value, see, e.g., the recent results of
Fjordholm, Mishra on corrolation measures



Relationship with kinetic models : Computational methods



Approximation theory of Young measures

(Roubicek // Pedregal 1996-7)

Suppose that for every h > 0 there exist a continuous linear projector

P, : LY(Q;Co(S)) — L' (€ S1) = Pu(L'(Q;C(S))) where S, is a finite
subspace of C(S) and S C R?. Let further Y,(Q, S) be the set of all Young
measures which map Q into (Sx)*.

Lemma
The spaces P;; (LS (€ MF(S)) and L (Q; (Sn)*) are isomorphic. In
particular if

Pr(Y(©Q,5)) CY(Q,5S)

then
Pr(Y(Q,9) 2Yr(Q,S).

If Y,(Q,S5) is a space of approximate Young measures, then given an
w€Y(Q,S) there exist only one i € Y, (2, S) such that

/(q&,ﬁz,t)dmdt:/(Phqﬁ,uz,t)dxdt (0.3)
Q Q

forall ¢ € L' (Q;C(9)).



A specific choice

Let S, be a finite element subspace of C(S), then the interpolation operator
of the form

Pr(¢(x,t,)) Zaﬁaxt&)vz() (0.4)
can be used.

Here {v;}i-, is a standard nodal basis of S, and {¢; € S};_; are the mesh
points.



Explicit representation of the approximate Young
measure

It is essential now to see the form of the approximate measure:

/<¢a ,uzt d&"dt / Zqﬁ m t fz Uz ,uz,t>dxdt
:;/n¢(x’t’@)@i(ﬁ)’m,ﬁdazdt:; /Q (e, ) /S (x,t, \)dbe, (\)dadt
:/Q/S¢(m’t’A)d[;ai(m’t)ééio\)]dmdt:A<¢?Zai(xat)5§i>d$dt

=1
forall ¢ € L' (Q; C(S)) where a;(z,t) = (vs, ue,:) and § is the Dirac measure.
Therefore,

fio = Y i, )3, (0.5)

» The functions «; here are unknowns and need to be determined in
order to compute the measure f

» The approximation of a young measure p is equivalent to the
determination of the action of i on every basis function v; of the space
Sh-



Approximation of Measure-valued solutions of
conservation laws

Substituting ¢ with 2 in the definition of measure valued solutions of the CL
(uo = 0)

[ i ie) - 61+ (i) - 02)dode = 0.

Q
Hence,

(id, Y " oui(w, t)de,) - ¢ + (A, Y u(w, t)0¢,) - ) dadt = 0 =
=1

i=1

i=1

/o

Q

/ (Zﬁz‘ai(%,t) “ e+ Z A(&)ai(z,t) - ¢ )dadt = 0.
Q i=1

Thus, one may conclude

> G, t)e+ Y A(G)ai(x, ). 0. (0.6)
i=1 i=1



A family of approximate models

Considering the system

&-ai(x, t)t -+ A(&)al(m,t)z = Mi(ac,t), fori = 1, Lo,

> n equations with n unknowns «;

> we need > M;(z,t) =0
=1

» conditions on M; which will lead to approximations of the entropy
measure valued solution

» are these systems meaningful ?

v

discrete kinetic model
» uniqueness within a class (??)



Relationship with kinetic models : Stability / Uniqueness



Motivation on the choice of M;

To answer the above questions we need to go back to the kinetic formulation
of the CL.

A function f(z,t,&) € L™(0,+o0; L' (R?)) is called a kinetic solution of the
scalar conservation law if

Of(x,t,§) _ Om(t,x,§)

af(% t, 5) ’ o . /
T + A'(6) o = 9 in D (0.8)

where m is a bounded nonnegative measure on (R x R x (0, +00)) and

f = Xu(z,t)- (09)
Here, u(z,t) is the entropy solution of the CL and x is given by

1if0< <A
(€ ={-1ifx<e<0
0 otherwise

» Lions, Perthame, Tadmor 95
» equivalence to the entropy formulation of the CL



Kinetic formulation and Young measures

A function f(z,t,&) € L>(0, +oo; L' (R?)) is called a generalized kinetic
solution of the scalar conservation law with initial data fo, if for all
¢ € D(]0,+00) x R x R) we have

/ /f ’ 75 8¢xt€) (5)8¢($t£)}d1’d§dt

(0.10)
/ /mtx& ”g)d dédt — /foxf (0, x,&)dxde

where m is a bounded nonnegative measure on (R x R x (0, +c0)) and

[z 1,6)| = sgn(€) f(z,1,€) < (0.112)
f= /XA &)dvg, (A (0.11b)

» v, is a Young measure associated to f

» LPT 95, Perthame and Tzavaras 2000, Perthame- Book 2002, Panov
1998, Debussche and Vovelle 2013



Choice of M; : Diffusion approximations

Consider now, for each ¢ > 0 the parabolic equation

Osu + 0 A(u) = €Uqzz, ©E€R, t>0. (0.12)
The corresponding kinetic formulation of this equation is given by

Ixu () Mxu(€) _ xuld) _ | (86@ —u) (c’m)) Im*

o T4, 02 e \oz) |~ o¢

» G.-Q. Chen and B. Perthame 2003.
> Recall

/qu(@ de = u

» Our aim is first to consider schemes introducing artificial diffusion



Approximation by viscosity: Generalised viscous
kinetic solutions : Uniqueness

A function f(z,t,&) € L>(0,4o00; L' (R?)) is called a generalized viscus
kinetic solution of the scalar conservation law with initial data fo, if for all
¢ € D(]0,+00) x R x R) we have

/ /f x 75 8¢$t§) (£)%}dwd§dt

f(z, t 5 09(x,t,&)
/ / Be( oo dedgdt

/ /m 2,62 ”S)d dgdt—/foxg (0, z, €)dade

where m is a bounded nonnegative measure on (R x R x (0, +00)) and

£, 1,6)] = sgn(€) f(z,1,€) < 1
f= /R A E)dva (V).

» v, is a Young measure associated to f



Approximation by viscosity: Monte-Carlo sampling

To fix ideas, consider different approximations w;, j = 1,...,J, which
correspond to different initial data uj, j = 1,..., J . Assume that all u; satisfy
Ou+ O, A(u) = €ugy, ¢ E€R, t>0. (0.13)

then we would like to study the behaviour of the measure
J
1
J Z Ou
j=1

> each 4, corresponds the kinetic function x.; and all these functions

satisfy
MXul®) | i Oxul®)  Fxul§) _ [06(E—wu) (@)2 _ omS
o O T e e\ Tae \ar) )T e
» Then, to the sample above, we associate the kinetic function,
w8 = i Z Xuj (t,2) (€ (0.14)

> Due to the linearity of the principal part of the viscous kinetic
formulation, each such f” satisfies the generalised , (here B, = I), for
an appropriate measure m’ and for fo(z, &) = 5 Z;’:l X (2) () -
J



Analysis/design of schemes

> v, . is a Young measure associated to f

» discretisation through approximate Young measures will lead to
schemes introducing artificial diffusion

» |[B:]lrs —0ase—0
» straightforward extension in multi-D



Analysis : several questions

vy

vVVvyVvyVVyvyy

what do we compute?

Uniqueness of the generalised kinetic solutions with general initial data
within a class

Convergence of the approximate kinetic models

Convergence of viscosity Monte-Carlo samplings

Convergence of the fully discretised approximate kinetic models
Systems ??

Other approximations??



Generalised kinetic solutions of viscosity
approximations: Uniqueness llI

Theorem

In addition to the previous hypothesis, assume that the defect measures are
functions of f and f satisfying (up to regularisation and as
B[z, | BllLee — 0)

> (m(v) —m(v),v —v) <0,

» m=0,iff=0.

> Assume further that the initial data satisfy f(0,z,£) = f(0,z,&).
» Then as both || B||z, || B||L~ — 0

||f—f||L2 —0.



Remarks

> preliminary result —possible improvements
> interesting analytical questions are posed

» Uniqueness of measure valued solutions within a class : Fjordholm,
Mishra ARMA 2018 : Correlation measures

» Relationship to UQ : Despres and Perthame // S. Jin

» Systems : quite difficult / however this approach hinges on
approximating kinetic models and not on equivalent kinetic formulations
for the limiting problem.



Are parametrised Young measures appropriate for
statistical studies?

» The main spaces used in statistical studies of PDEs are Probability
spaces defined on function spaces: The computation of such measures
is very expensive and not always robust.

» Young measures : much simpler objects which are easier to handle
computationally. However the information they provide is restricted
compared to measures on function spaces.

» Analogy to PDEs : very weak solutions + wPDE imply smoothness :
Young measure solutions + appropriate equations provide more
structure (e.g., weak-strong uniqueness)



Xpovia IToAhd Mékn!!!



