A kinetic approach to statistical inference for nonlinear waves

Charalambos Makridakis

IACM-FORTH and Univ Crete, Univ Sussex

July 4, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

based on joint work with

Ioannis Gkanis (Sussex, IACM-FORTH)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Sensitivity of schemes I: Shocks and interfaces are related to *Nonlinear problems with non unique weak solutions*

Typical models include nonlinear evolution PDEs

 $u_t(t) + A(u(t)) = 0$

Due to the singular structure of the solutions existence and uniqueness of (weak) solutions is very subtle

- (1) non-uniqueness of weak solutions Conservation Laws, Hamilton Jacobi, Equations describing phase separation, ...
- (2) selection criteria for the physical relevant solution CL: entropy solution, HJ: viscosity solution, geometric laws for propagating interfaces

A typical example: Scalar Conservation Laws

$$u_t(x,t) + \operatorname{div} F(u(x,t)) = 0, \quad x \in \mathbb{R}^d, t > 0.$$

Unique entropy solution:

$$\eta(u)_t + \operatorname{div} S(u) \le 0, \quad \text{in } \mathcal{D}'.$$

The entropy solution is characterized as the limit of viscosity approximations ("Viscosity solution") :

 $u^{\epsilon} \to u$.

$$u_t^{\epsilon}(x,t) + \operatorname{div} F(u^{\epsilon}(x,t)) = \epsilon \Delta u^{\epsilon}(x,t), \quad x \in \mathbb{R}^d, t > 0.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Relation to the design of schemes: artificial diffusion

Numerical schemes

"Reasonable" schemes do not perform always as we expect.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- oscillations (Ex. 1)
- convergence to the "wrong" solution (Ex. 2)

WHY?

Numerical schemes induce their own physics...

"Reasonable" schemes do not perform always as we expect.

each scheme corresponds to an approximation of the PDE

$$v_t^h(t) + A(v^h(t)) = B_h(h, v^h(t)),$$

(ロ) (同) (三) (三) (三) (○) (○)

where $B_h(h, v^h(t))$ is a differential operator acting on v^h not always clear.

this is a PDE that models the numerical scheme

Oscillatory schemes

- Limit dynamics of such schemes refs: von Neumann 1943-44, Goodman and Lax 1988, Hou and Lax 1991, Brenier and Levy 2000 computational studies.
- PDEs: development of the theory of small dispersion limits (Lax, Levermore, Venakides,...)

Introducing artificial diffusion in the scheme

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Ex. 2: But still computations can be subtle...

Transport, diffusion and dispersion

[LeFloch, Rohde 2000]

Part II : Statistics : Measure Valued Solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why we would like to compute/study such solutions?

The behaviour of approximations (and in some important cases of the "solution") is not certain...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- The data might contain uncertainties : statistics for the corresponding solutions
- Uncertainty Quantifiaction

Statistics for an assembly of initial data

Consider the nonlinear conservation law:

$$u_t(x,t) + \operatorname{div} F(u(x,t)) = 0, \quad x \in \mathbb{R}^d, t > 0.$$

To fix ideas, consider different solutions u_j , $j = 1, \ldots, J$, which correspond to different initial data u_j^0 , $j = 1, \ldots, J$. Assume that all u_j satisfy the above PDE.

Is it possible to derive some kind of statistical inference without solving the PDE with all the different data (solving the PDE J times)?

It is natural to consider measures of the form

$$\frac{1}{J}\sum_{j=1}^J \delta_{u_j(x,t)}.$$

- Can we consider solutions of the PDE which are measure valued?
- What type of measures should we consider?
- Is it possible to have a theoretical framework which will support our computational approach?

Let $\mathbf{M}(\mathbb{R}^m)$ be the set of all signed Radon measures on \mathbb{R}^m . We denote by $\mathbf{M}^+(\mathbb{R}^m)$ the set of all positive Radon measures and by $\mathbf{M}^{\mathbb{P}}(\mathbb{R}^m)$ the set of all probability measures over $\mathcal{B}(\mathbb{R}^m)$ that is,

$$\mathbf{M}^{\mathbb{P}}(\mathbb{R}^m) = \{ \mu \in \mathbf{M}^+(\mathbb{R}^m), \mu(\mathbb{R}^m) = 1 \}.$$

We call *young measure* a weakly^{*} measurable mapping from Ω into $\mathbf{M}^{\mathbb{P}}(\mathbb{R}^m)$. The set of all young measures is denoted by $\mathbf{Y}(\Omega, \mathbb{R}^m)$.

Young Measures II

Let u_j a bounded sequence of approximations in $L^{\infty}(\Omega, \mathbb{R}^m)$. Then there exists a subsequence and a measure $\mu \in \mathbf{Y}(\Omega, \mathbb{R}^m)$, $\mu = \mu_{x,t}$, $(x,t) \in \Omega$, such that for $G \in C(\mathbb{R}^m)$,

$$G(u_j) \rightharpoonup \overline{G}, \quad \text{where} \quad \overline{G}(x,t) = \langle G, \mu_{x,t} \rangle = \int_{\mathbb{R}^m} G(\lambda) d\mu_{x,t}(\lambda).$$

 $\langle G, \delta_{u(x,t)} \rangle = \int_{\mathbb{R}^m} G(\lambda) d\delta_{u(x,t)}(\lambda) = G(u(x,t))$

$$\langle id, \delta_{u(x,t)} \rangle = \int_{\mathbb{R}^m} \lambda \, d\delta_{u(x,t)}(\lambda) = u(x,t)$$

Measure-valued solutions (Di Perna)

A measure $\mu \in \mathbf{Y}(\Omega, \mathbb{R}^m)$ is said to be a measure-valued solution of the conservation law if it satisfies the expression

$$\int_{\Omega} \left(\langle id, \mu_{x,t} \rangle \cdot \phi_t + \langle f, \mu_{x,t} \rangle \cdot \phi_x \right) dx dt + \int_{\mathbb{R}} u_0 \cdot \phi(0, x) dx = 0, \quad (0.1)$$

for all $\phi \in C_0^{\infty}(\overline{\Omega})$.

This definition is an extension of weak solutions to allow measure valued solutions.

Similarly, a young measure $\mu \in \mathbf{Y}(\Omega, \mathbb{R}^m)$ which fulfils the additional relation

$$\int_{\Omega} \left(\langle \eta, \mu_{x,t} \rangle \cdot \phi_t + \langle Q, \mu_{x,t} \rangle \cdot \phi_x \right) dx dt + \int_{\mathbb{R}} u_0 \cdot \phi(0, x) dx \ge 0, \quad (0.2)$$

for all $\phi \in C_0^{\infty}(\Omega)$ with $\phi \ge 0$ is called an *entropy measure-valued* solution of the conservation law.

Questions / Problems

- Measure valued solutions allow for a statistical analysis of the problem
- Computational methods tailor made for computing measure valued solutions...
- What do we compute?? We need a solid stability framework to justify the computations.
- Available results concentrated to initial data of the form

 $\delta_{u^0(x)}$.

Uniqueness is lost for general measure valued initial data

The definition of Entropy Measure Valued solutions has to be enhanced in order to allow a more consistent theory with non-atomic initial value, see, e.g., the recent results of Fjordholm, Mishra on corrolation measures Relationship with kinetic models : Computational methods

Approximation theory of Young measures

(Roubicek // Pedregal 1996-7)

Suppose that for every h > 0 there exist a continuous linear projector $P_h : L^1(\Omega; C_0(S)) \to L^1(\Omega; S_h) = P_h(L^1(\Omega; C(S)))$ where S_h is a finite subspace of C(S) and $S \subset \mathbb{R}^d$. Let further $\mathbf{Y}_h(\Omega, S)$ be the set of all Young measures which map Ω into $(S_h)^*$.

Lemma

The spaces $P_h^*(L^\infty_w(\Omega;\mathbf{M}^\mathbb{P}(S))$ and $L^\infty_w(\Omega;(S_h)^*)$ are isomorphic. In particular if

 $P_h^*(\mathbf{Y}(\Omega, S)) \subset \mathbf{Y}(\Omega, S)$

then

$$P_h^*(\mathbf{Y}(\Omega, S)) \cong \mathbf{Y}_h(\Omega, S).$$

If $\mathbf{Y}_h(\Omega, S)$ is a space of approximate Young measures, then given an $\mu \in \mathbf{Y}(\Omega, S)$ there exist only one $\bar{\mu} \in \mathbf{Y}_h(\Omega, S)$ such that

$$\int_{\Omega} \langle \phi, \bar{\mu}_{x,t} \rangle dx dt = \int_{\Omega} \langle P_h \phi, \mu_{x,t} \rangle dx dt$$
(0.3)

for all $\phi \in L^1(\Omega; C(S))$.

A specific choice

Let S_h be a finite element subspace of C(S), then the interpolation operator of the form

$$P_h(\phi(x,t,\xi)) = \sum_{i=1}^n \phi(x,t,\xi_i) \upsilon_i(\xi)$$
(0.4)

can be used.

Here $\{v_i\}_{i=1}^n$ is a standard nodal basis of S_h and $\{\xi_i \in S\}_{i=1}^n$ are the mesh points.

Explicit representation of the approximate Young measure

It is essential now to see the form of the approximate measure:

$$\int_{\Omega} \langle \phi, \bar{\mu}_{x,t} \rangle dx dt = \int_{\Omega} \langle \sum_{i=1}^{n} \phi(x, t, \xi_{i}) \upsilon_{i}(\xi), \mu_{x,t} \rangle dx dt$$

$$= \sum_{i=1}^{n} \int_{\Omega} \phi(x, t, \xi_{i}) \langle \upsilon_{i}(\xi), \mu_{x,t} \rangle dx dt = \sum_{i=1}^{n} \int_{\Omega} \alpha_{i}(x, t) \int_{S} \phi(x, t, \lambda) d\delta_{\xi_{i}}(\lambda) dx dt$$

$$= \int_{\Omega} \int_{S} \phi(x, t, \lambda) d[\sum_{i=1}^{n} \alpha_{i}(x, t) \delta_{\xi_{i}}(\lambda)] dx dt = \int_{\Omega} \langle \phi, \sum_{i=1}^{n} \alpha_{i}(x, t) \delta_{\xi_{i}} \rangle dx dt$$
or all $\phi \in L^{1}(\Omega; C(S))$ where $\alpha_{i}(x, t) = \langle u, \mu_{i} \rangle$ and δ is the Dirac measure

for all $\phi \in L^1(\Omega; C(S))$ where $\alpha_i(x, t) = \langle v_i, \mu_{x,t} \rangle$ and δ is the Dirac measure. Therefore,

$$\bar{\mu}_{x,t} = \sum_{i=1}^{n} \alpha_i(x,t) \delta_{\xi_i}.$$
(0.5)

- The functions α_i here are unknowns and need to be determined in order to compute the measure μ
- ► The approximation of a young measure µ is equivalent to the determination of the action of µ on every basis function v_i of the space S_h.

Approximation of Measure-valued solutions of conservation laws

Substituting μ with $\bar{\mu}$ in the definition of measure valued solutions of the CL $(u_0 = 0)$ $\int_{\Omega} \left(\langle id, \bar{\mu}_{x,t} \rangle \cdot \phi_t + \langle A, \bar{\mu}_{x,t} \rangle \cdot \phi_x \right) dx dt \cong 0.$

$$\int_{\Omega} \left(\langle id, \sum_{i=1}^{n} \alpha_i(x,t) \delta_{\xi_i} \rangle \cdot \phi_t + \langle A, \sum_{i=1}^{n} \alpha_i(x,t) \delta_{\xi_i} \rangle \cdot \phi_x \right) dx dt \cong 0 \Rightarrow$$
$$\int_{\Omega} \left(\sum_{i=1}^{n} \xi_i \alpha_i(x,t) \cdot \phi_t + \sum_{i=1}^{n} A(\xi_i) \alpha_i(x,t) \cdot \phi_x \right) dx dt \cong 0.$$

Thus, one may conclude

$$\sum_{i=1}^{n} \xi_{i} \alpha_{i}(x,t)_{t} + \sum_{i=1}^{n} A(\xi_{i}) \alpha_{i}(x,t)_{x} \approx 0.$$
 (0.6)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A family of approximate models

Considering the system

 $\xi_i \alpha_i(x,t)_t + A(\xi_i) \alpha_i(x,t)_x = M_i(x,t), \quad \text{for } i = 1, \dots, n \quad (0.7)$

• n equations with n unknowns α_i

• we need
$$\sum_{i=1}^{n} M_i(x,t) = 0$$

- conditions on M_i which will lead to approximations of the entropy measure valued solution
- are these systems meaningful ?
- discrete kinetic model
- uniqueness within a class (??)

Relationship with kinetic models : Stability / Uniqueness

・ロト < 団 > < 三 > < 三 > のへで

Motivation on the choice of M_i

To answer the above questions we need to go back to the kinetic formulation of the CL.

A function $f(x,t,\xi)\in L^\infty(0,+\infty;L^1(\mathbb{R}^2))$ is called a kinetic solution of the scalar conservation law if

$$\frac{\partial f(x,t,\xi)}{\partial t} + A'(\xi)\frac{\partial f(x,t,\xi)}{\partial x} = \frac{\partial m(t,x,\xi)}{\partial \xi} \quad \text{in } \mathcal{D}'$$
(0.8)

where m is a bounded nonnegative measure on $(\mathbb{R}\times\mathbb{R}\times(0,+\infty))$ and

$$f = \chi_{u(x,t)}.\tag{0.9}$$

(日) (日) (日) (日) (日) (日) (日)

Here, u(x,t) is the entropy solution of the CL and χ_{λ} is given by

$$\chi_{\lambda}(\xi) = \begin{cases} 1 \text{ if } 0 < \xi \leq \lambda \\ -1 \text{ if } \lambda \leq \xi < 0 \\ 0 \text{ otherwise} \end{cases}$$

- Lions, Perthame, Tadmor 95
- equivalence to the entropy formulation of the CL

Kinetic formulation and Young measures

A function $f(x, t, \xi) \in L^{\infty}(0, +\infty; L^{1}(\mathbb{R}^{2}))$ is called a generalized kinetic solution of the scalar conservation law with initial data f_{0} , if for all $\phi \in D([0, +\infty) \times \mathbb{R} \times \mathbb{R})$ we have

$$\int_{0}^{\infty} \int_{\mathbb{R}^{2}} f(t, x, \xi) \left[\frac{\partial \phi(x, t, \xi)}{\partial t} + A'(\xi) \frac{\partial \phi(x, t, \xi)}{\partial x} \right] dx d\xi dt$$

$$= \int_{0}^{\infty} \int_{\mathbb{R}^{2}} m(t, x, \xi) \frac{\partial \phi(x, t, \xi)}{\partial \xi} dx d\xi dt - \int_{\mathbb{R}^{2}} f_{0}(x, \xi) \phi(0, x, \xi) dx d\xi dt$$
(0.10)

where m is a bounded nonnegative measure on $(\mathbb{R}\times\mathbb{R}\times(0,+\infty))$ and

$$|f(x,t,\xi)| = sgn(\xi)f(x,t,\xi) \le 1$$
 (0.11a)

$$f = \int_{\mathbb{R}} \chi_{\lambda}(\xi) d\nu_{x,t}(\lambda).$$
 (0.11b)

A D F A 同 F A E F A E F A Q A

- ν_{x,t} is a Young measure associated to f
- LPT 95, Perthame and Tzavaras 2000, Perthame- Book 2002, Panov 1998, Debussche and Vovelle 2013

Choice of M_i : Diffusion approximations

Consider now, for each $\epsilon > 0$ the parabolic equation

$$\partial_t u + \partial_x A(u) = \epsilon u_{xx}, \ x \in \mathbb{R}, \ t > 0.$$
 (0.12)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The corresponding kinetic formulation of this equation is given by

$$\frac{\partial \chi_u(\xi)}{\partial t} + A'(\xi) \frac{\partial \chi_u(\xi)}{\partial x} - \epsilon \frac{\partial^2 \chi_u(\xi)}{\partial x^2} = \epsilon \left(\frac{\partial \delta(\xi - u)}{\partial \xi} \left(\frac{\partial u}{\partial x} \right)^2 \right) = \frac{\partial m^{\epsilon}}{\partial \xi}$$

G.-Q. Chen and B. Perthame 2003.

Recall

$$\int_{\mathbb{R}} \chi_u(\xi) \, d\xi = u$$

Our aim is first to consider schemes introducing artificial diffusion

Approximation by viscosity: Generalised viscous kinetic solutions : Uniqueness

A function $f(x, t, \xi) \in L^{\infty}(0, +\infty; L^1(\mathbb{R}^2))$ is called a generalized viscus kinetic solution of the scalar conservation law with initial data f_0 , if for all $\phi \in D([0, +\infty) \times \mathbb{R} \times \mathbb{R})$ we have

where m is a bounded nonnegative measure on $(\mathbb{R}\times\mathbb{R}\times(0,+\infty))$ and $|f(x,t,\xi)|=sgn(\xi)f(x,t,\xi)\leq 1$

$$f = \int_{\mathbb{R}} \chi_{\lambda}(\xi) d\nu_{x,t}(\lambda).$$

ν_{x,t} is a Young measure associated to f

Approximation by viscosity: Monte-Carlo sampling

To fix ideas, consider different approximations u_j , j = 1, ..., J, which correspond to different initial data u_j^0 , j = 1, ..., J. Assume that all u_j satisfy

$$\partial_t u + \partial_x A(u) = \epsilon u_{xx}, \quad x \in \mathbb{R}, \quad t > 0.$$
 (0.13)

then we would like to study the behaviour of the measure

$$\frac{1}{J} \sum_{j=1}^{J} \delta_{u_j} \, .$$

• each δ_{u_j} corresponds the kinetic function χ_{u_j} and all these functions satisfy

$$\frac{\partial \chi_u(\xi)}{\partial t} + A'(\xi) \frac{\partial \chi_u(\xi)}{\partial x} - \epsilon \frac{\partial^2 \chi_u(\xi)}{\partial x^2} = \epsilon \left(\frac{\partial \delta(\xi - u)}{\partial \xi} \left(\frac{\partial u}{\partial x} \right)^2 \right) = \frac{\partial m^{\epsilon}}{\partial \xi}$$

Then, to the sample above, we associate the kinetic function,

$$f^{J}(t,x,\xi) = \frac{1}{J} \sum_{j=1}^{J} \chi_{u_{j}(t,x)}(\xi) .$$
(0.14)

► Due to the linearity of the principal part of the viscous kinetic formulation, each such f^J satisfies the generalised , (here $B_{\epsilon} = I$), for an appropriate measure m' and for $f_0(x, \xi) = \frac{1}{J} \sum_{j=1}^J \chi_{u_s^0(x)}(\xi)$

Analysis/design of schemes

- ν_{x,t} is a Young measure associated to f
- discretisation through approximate Young measures will lead to schemes introducing artificial diffusion

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\blacksquare \|B_{\varepsilon}\|_{L^{\infty}} \to 0 \text{ as } \varepsilon \to 0$$

straightforward extension in multi-D

Analysis : several questions

what do we compute?

 Uniqueness of the generalised kinetic solutions with general initial data within a class

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Convergence of the approximate kinetic models
- Convergence of viscosity Monte-Carlo samplings
- Convergence of the fully discretised approximate kinetic models
- Systems ??
- Other approximations??

Generalised kinetic solutions of viscosity approximations: Uniqueness III

Theorem

In addition to the previous hypothesis, assume that the defect measures are functions of *f* and \bar{f} satisfying (up to regularisation and as $||B||_{L^{\infty}}, ||\bar{B}||_{L^{\infty}} \to 0$)

$$(m(\nu) - \bar{m}(\bar{\nu}), \nu - \bar{\nu}) \le 0$$

•
$$m = 0, \text{ if } f = 0$$

Assume further that the initial data satisfy $\overline{f}(0, x, \xi) = f(0, x, \xi)$.

• Then as both
$$\|B\|_{L^{\infty}}, \|\bar{B}\|_{L^{\infty}} \to 0$$

$$||f - \bar{f}||_{L^2} \to 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remarks

- preliminary result –possible improvements
- interesting analytical questions are posed
- Uniqueness of measure valued solutions within a class : Fjordholm, Mishra ARMA 2018 : Correlation measures
- Relationship to UQ : Despres and Perthame // S. Jin
- Systems : quite difficult // however this approach hinges on approximating kinetic models and not on equivalent kinetic formulations for the limiting problem.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Are parametrised Young measures appropriate for statistical studies?

- The main spaces used in statistical studies of PDEs are Probability spaces defined on function spaces: The computation of such measures is very expensive and not always robust.
- Young measures : much simpler objects which are easier to handle computationally. However the information they provide is restricted compared to measures on function spaces.
- Analogy to PDEs : very weak solutions + wPDE imply smoothness : Young measure solutions + appropriate equations provide more structure (e.g., weak-strong uniqueness)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Χρόνια Πολλά Μάκη!!!

(ロ)、(型)、(E)、(E)、 E) のQの