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The problem: what we do and why

The problem: What we want to do & why

Scope: We want to construct wave packet (i.e. localized)
solutions of the phase space Schrodinger equation (PSSE), the
phase-space image of the usual (~ living in physical space time)
Schrodinger equation (SE) under the wave packet transform

Where PSSE appears: phase-space representations of QM
applied to: quantum chemistry, quantum optics/paraxial
propagation, atomic optical trapping, laser cooling, etc.

Why PSSE is mathematically challenging: It is a linear, but
non local, pseudo-differential equation, living in phase space, which
is the natural space to describe wave propagation
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The problem: what we do and why

What we have done so far (...small progress...)

We have constructed a formal asymptotic solution in four steps:

(1) We derived an of
the solution of PSSE, in terms of anisotropic Gaussian wave
packets

(2) By Stationary Complex Phase Theorem, we obtained an
of the solution, in the form of a

(3) We derived a
and the corresponding transport equation for the complex
amplitude

(4) We constructed the wavepacket solution from beam-like
solutions of the equations in step 3, by using

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrodinger equatiol



The Schrédinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

The Schrodinger equation (SE)

0, tel0,T],
Wo(x; h) € L2(R)

. 0~
(:ha - H)¢(x, t; 1)
P(x,t =0;h)

The Hamiltonian operator H = Op,, (H) is the Weyl quantization
of the real-valued and smooth Hamiltonian function H(q, p),
acting as

~ 1 \d o (x_ xX+q
CB) — p(x—q) .
Hy(x,t; h) : (27rh> jRJRd en H( > ,p)zﬁ(q, t;h) dqdp
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The Schrodinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

Wave packet transform

The wavepacket transform of ¢ € L2(R9, C; dx) is defined by

(W) (a,p,t:1) = (27h) e fRd Glap) (X: B, £ ) dx

where

- i(p-q / 2
Stap) 06 1) = ()" exp 7 (B - (x—@) - xa)

The map
W L2(R?,C; dx) — L*(R?*?,C; dqdp) |1 +— ¥ =W

is not a bijection.

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrodinger equatiol



The Schrodinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

Wave packet transform

The image of W is the Fock-Bargmann space

3= {\u : fwa dqdp < +© and

(Z—ihai)) —i(’2’+ih;q) wzo}

Thus, only Gaussian-weighted square, integrable analytic functions
in the variable (g — ip) € C, satisfying the Cauchy-Riemann

relations
(;q _ ,-;p)( Hmatloly) 0,

are admissible phase space wave functions.
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The Schrodinger equation

Wave packet transform

The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data

Fourier integral representation of ps wavefunction

Derivation of the phase space Schrodinger equation

The phase space Schrodinger equation (PSSE)

The conjugation H = WHW! of H with the wave packet
transform W, leads to the phase space Schrodinger equation

(ihi—ﬁ)ﬂ:(q,p,t;h) —0, tel0,T],
V(q,p,t =0;h) =Vo(q,p;h) €T,

governing the evolution of the phase space wavefunction (pswf)
V(g,p,t;h) = (WY)(q,p,t;h)
—d/2 _
= (27rh) J G(q,p) (X; )Y (x, t; h) dx
Rd
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The Schrodinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

Approximate phase space wave fucntion

By using the resolution of identity

1 \d
(%) JG(q,p)<G(q,p)7 o)dqdp = Iz ,
and the approximate solution G(%; p) (x, t; h) of the problem
(mﬁ—ﬁﬂwrm — 0, te[0,T]
at ) 1 7 b B )
Y(x,t =0;h) = vo(x;h) = Gqp(x:h),
the approximation understood in the sense
. a s =z .
H (Ih & — H) G(q’p)(., t, h)

for the fixed time interval [0, T]

— 0(1*?), h—o0*

L2(R9)
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The Schrodinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

Approximate phase space wave function

we construct the approximate pswf

W~ VZ(q,p,t;h) = fﬁz(q,p,n,ﬁ, t; h)Wo(n, & h) dndé

where

1 d _
’Cz(q> P, Sa t; h) = (%) f G(q,p) (X; h) G(%,g) (X, t; h) dx .

is the approximate phase space propagator (Green's fucntion).
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The Schrodinger equation
Wave packet transform
Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
f approximate initial data
ral representation of ps wavefunction

Construction of approximate initial data

We assume WKB initial data for the Schrodinger equation (SE)

Wo(xi h) = Yl(x) i= Ro(x) en®™ | h« 1,
8250 o0 d 2
W) £0,Ro e CC(RY,R), fRdRodx—l,

and, by using the Stationary Complex Phase Theorem, we
approximate Wy = Wiy for h « 1

So € CP(RY,R), det (

i
Vo(q.pi 1) ~ V5(q, p):= Xo(a. pi 1) exp| +00(q. p)
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The Schrodinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

Construction of approximate initial data

The amplitude xo and the phase 6y are given by

Ro(z(q.p))
\/det (I - i%(Z(q,P)))

0o(q,p) = So(z(q,p))—p- (Z(q, p)—a) +é(z(q7 P)_q)2_¥

Xo(q, p; h) = (wh)~/*

» So(z) and Ry(z) are the almost analytic extensions to the
complex variable z = x + iy € C? of So(x) and Ry(x)
» z = z(q, p) is the complex solution of
050(2)
0z

—p+i(z—q)=0
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The Schrodinger equation
Wave packet transform

Derivation of the phase space Schrodinger equation The phase space Schrédinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

representation of the ps wavefunction

By using the approximate initial data, we further approximate

1

d i
wZ ~ wh(q7 P, t) = (7> f¢(n7 67 t; h) eﬁF(mPﬂLE,t) dndf
21h

where

F(,p.m,&.t) = Oo(m,€) + A, £, t) + %

1 1/ q- ' B}
+2(q7p)~J(m,£t)+2( Q_nt ) Q(m&’t)( Z_Ztt )
and

(. €.1) = (o) (cer T =2E) o2, €9)im)
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The narrow beam approximation
The narrow beam ansatz The ansatz

Narrow beam approximation of W and the Ansatz

Applying Stationary Complex Phase Theorem to the Fourier
integral for W" we get a narrow beam approximation of the form

WX, t) = x(X, t;h) en ®X0 X = (q,p)

We use this approximation as an Ansatz to built an approximate
solution of PSSE. It follows that this Ansatz solves approximately
the PSSE
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The narrow beam approximation
The narrow beam ansatz The ansatz

The Ansatz

provided that the complex phase ® solves the Hamilton-Jacobi
equation

o®
ot

od

+H(X, a7> —0, ®(X,0) =0h(X),

and the complex amplitude x solves the transport equation
X 0P 2o 0°H (X od

ox 1
E_Ja7<5_Ja7>'ﬁ_itrJWJW(f_Jﬁ)X_O’
X(X,0; h) = xo(X;h)

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrodinger equatiol



The narrow beam approximation
The narrow beam ansatz The ansatz

Construction of the wavepacket solution of PSSE

By using Maslov's complex WKB method we construct

» the phase ¢

O(X. 1) = {0(Xo(e) + %th(a) (X = Xi(@) + Au(Xo(a), £

. N
+5(X = Xe(e) - Qe 1)(X — xf(a))}aza(x,t)

where
» A, is the symmetrized phase space action

Au(Xo(@0). ) = A(Xo(ao), 1) PO 9L~ Pol@) " dole).
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The narrow beam approximation
The narrow beam ansatz The ansatz

Construction of the wavepacket solution of PSSE

> é solves a certain Riccati equation, and it is such that on any
compact set K outside some neighborhood A; of A;

Im (X, t) > C(K) >0

» a = (X, t) is the unique solution of the system

. oX; o
oo

(X = Xi(a))

i.e., to every point X not belonging to, but in proximity to A,
there exists a unique nearest point X:(a(X,t)) on A;.
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The narrow beam approximation
The narrow beam ansatz The ansatz

Construction of the wavepacket solution of PSSE

» the amplitude x

xo(Xo(); h)
det C(ay, t)

X(X,t;h) = {

} ‘it has compact support
a=a(X,t)

where the matrix C(X, P, t) is derived from the variational system
in double phase space

d(C\ _( Hex Hep C
dt\ D ) \ —Hxx —Hxp D

C(Xo(a), Po(ax),0) =1 and D(Xg(a), Po(c),0) = —o

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrodinger equatiol



The narrow beam approximation
The narrow beam ansatz The ansatz

Construction of the wavepacket solution of PSSE

The constructed solution

WZ(X, t) = x(X,t; h) en ®X:0) , X=1(q,p)

is a wavepacket moving in phase space thanks to the properties

‘IIIICD(X,I') > C(K) >O‘

and

‘X has compact support‘
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The narrow beam approximation
The narrow beam ansatz The ansatz

Schematic description of the wavepacket in phase space
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Final remarks

Some final remarks

» The accuracy of the approximation have been systematically
studied for linear and quadratic potential (even in these simple
cases the application of stationary complex phase formula is
non trivial due to the needed almost analytic continuations)

» Open problem: Construction of eigenfunctions of PSSE which
do not belong to the Fock-Bargmann space, i.e. " generalized
eiagenfunctions” needed to built scattering solutions

» Most of the results are described in

» Asymptotic approximations for the phase space Schréodinger
equation, J. Phys. A: Math. & Theor., 2022

» Construction of the Van Vleck formula using the wave packet
transform, submitted
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Final remarks

Thank you very much for your attention!!
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Final remarks
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Final remarks

Explicit form of G2

The explicit form of G2 is

G py(x:t:h) = (vh)""*a(q, p, 1)
1

(B2 +A@p ) +pe (x—a0) + 5(x—a0) - Z(x—ay)

i
X exp — 5 >

h
where
» (q,; ,p;): the solution of the Hamiltonian system

da. _oH —dp. _ OH

gt —p dt ~ oq (0, Po) = (q,p) ,
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Final remarks

Explicit form of G2

» Z: solution of the Riccati equation
dz .
F+ZHPPZ+quZ+ZHpq+qu:O, Z(0) =il

» a: amplitude

a(q,p,t) = exp (— ;J{tr(prZ(q,p,TD + Hpq} dT)

0
» A(q, p,t): phase space action along the trajectory (q,, p;)
t

d T
A(q,p,t)=fpf qu dr —H(q,p)t .
0
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Final remarks

Explicit form of K?

By direct Gaussian integration

KZ(q,p,n. €, t) = (i)d<det

(ne — i€)\ 12
2rh >

o(n — i)

X exp ;{A(n,i, t) + £n =& + %(q,p) I, €4)

+1<q—m )TQ< q—m)
2 P_Et p_Et

where
il—il—iz)~t L—@-iz)-
Q& t) = ( -0-iz) Tl iz) )
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Final remarks

Stationary Complex Phase Formula

Theorem. (Nazaikinksii et al., Melin & Sjostrand)Consider the
oscillatory integral

2rh " x= v/det M P\ P G

I(p; h), with s > 1, amplitude a : R™ — C and phase

®:R" xR™ — C of class C*® in p, where a is compactly
supported and ® possesses an everywhere non-negative imaginary
part on supp a, so that, for given p € R", the equations

me(px) =0, 2 (px) =0

have at most a single solution on supp a,
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Final remarks

Stationary Complex Phase Formula

while the Hessian matrix
)
ﬁ(P, X)

is non-singular for all (p, x) € R" x supp a.
Then, for all r =0,...,s, the following estimate holds as i — 07

ey ‘a(p,z(p)) i ,z(p))( )
I(p;h) = en “\P 1+ o(h)
Vet — Z2(p. 2(p))

where 4/e is the principal branch of the square root function, the
left superscript r denotes the r-analytic extensions of a function to
the complex variable z = x + iy,
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Final remarks

Stationary Complex Phase Formula

and z = z(p) is the unique complex solution of the equation

0o
aiz(P,Z) =0.

In addition, there exists ¢ > 0 such that for all p e R”

Im ®(p, z(p)) = c[Imz(p)* .
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Final remarks

Phase space Weyl operator

The action of 4 = WHW~1 on the phase space wavefunction W
is given in integral form by

_ 1 \2d [ X+Y
H\U(X):(%> Jeh”'@‘—")H(X,P)( ; P)U(Y)dYdP

where the Weyl symbol

H(X, P) = H(%—v,g+u> - H(% _ JP) . X =(q,p),P=(u,v)

of the operator H is defined on the doubled phase space
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Final remarks

Some phase space geometry

1
Le = {X = Xi(a), P = Pi(a) = 5IX:(a) . aeR’}
is the solution of the Hamiltonian system

dX oM dP oM
= ap s g = oy £20
dt ~ 0P’ dt X

generated by the Hamiltonian H(X, P) = H(%X - JP) in double
phase space (X = (g, p), P = (u,v)) € R?? x R??, with initial
conditions

06

X|t:0:XO(a)E/\O7 P|t:0: Po(a) = oX

00 (Xo(a) = 30Xoar)
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Final remarks

Some phase space geometry

S s
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Final remarks

Some phase space geometry

where /g is the Lagrangian manifold generated by the phase of the
initial data for (SE),

05
Ao := {Xo =(q.p)eR*|p= a—f(q)} :

described in appropriately chosen parametrization
Xo = Xo(a) ,a e RC.

It is helpful to observe that the projection of L; to the phase space
is

/\t:{X:Xt(a), aeRd},

that is, the image of Ag under the Hamiltonian flow in phase
space.
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