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The problem: What we want to do & why

Scope: We want to construct wave packet (i.e. localized)
solutions of the phase space Schrödinger equation (PSSE), the
phase-space image of the usual („ living in physical space time)
Schrödinger equation (SE) under the wave packet transform

Where PSSE appears: phase-space representations of QM
applied to: quantum chemistry, quantum optics/paraxial
propagation, atomic optical trapping, laser cooling, etc. ref

Why PSSE is mathematically challenging: It is a linear, but
non local, pseudo-differential equation, living in phase space, which
is the natural space to describe wave propagation
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What we have done so far (...small progress...)

We have constructed a formal asymptotic solution in four steps:

(1) We derived an approximate Fourier integral representation of
the solution of PSSE, in terms of anisotropic Gaussian wave
packets

(2) By Stationary Complex Phase Theorem, we obtained an Ansatz
of the solution, in the form of a WKB function with complex phase

(3) We derived a Hamilton-Jacobi type equation for the complex
phase and the corresponding transport equation for the complex
amplitude

(4) We constructed the wavepacket solution from beam-like
solutions of the equations in step 3, by using Maslov’s complex
WKB method
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The Schrödinger equation
Wave packet transform
The phase space Schrödinger equation
Representation of the ps wavefunction
Construction of approximate initial data
Fourier integral representation of ps wavefunction

The Schrödinger equation (SE)

´

i~
B

Bt
´ pH

¯

ψpx , t; ~q “ 0 , t P r0,T s ,

ψpx , t “ 0; ~q “ ψ0px ; ~q P L2pRdq

The Hamiltonian operator pH “ OpwpHq is the Weyl quantization
of the real-valued and smooth Hamiltonian function Hpq,pq,
acting as

pHψpx , t; ~q :“
´ 1

2π~

¯d
ż

Rd

ż

Rd

e
i
~p¨px´qqH

´x ` q
2

,p
¯

ψpq, t; ~q dqdp
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Wave packet transform

The wavepacket transform of ψ P L2pRd ,C; dxq is defined by

pWψqpq,p, t; ~q :“
´

2π~
¯´d{2

ż

Rd

sGpq,pqpx ; ~qψpx , t; ~q dx

where

Gpq,pqpx ; ~q “ pπ~q´d{4 exp
i

~

´p ¨ q
2

` p ¨ px ´ qq `
i

2
|x ´ q|2

¯

.

The map

W : L2pRd ,C; dxq Ñ L2pR2d ,C; dqdpq |ψ ÞÑ Ψ “Wψ

is not a bijection.
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Wave packet transform

The image of W is the Fock-Bargmann space

F “
!

Ψ :

ż

|Ψ|2 dqdp ă `8 and

˜

´q
2
´ i~

B

Bp

¯

´ i
´p

2
` i~

B

Bq

¯

¸

Ψ “ 0
)

Thus, only Gaussian-weighted square, integrable analytic functions
in the variable pq ´ ipq P Cd , satisfying the Cauchy-Riemann
relations

´

B

Bq
´ i

B

Bp

¯´

e
1

2~ pip¨q`|p|
2qΨ

¯

“ 0 ,

are admissible phase space wave functions.
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The phase space Schrödinger equation (PSSE)

The conjugation pH “W pHW´1 of pH with the wave packet
transform W, leads to the phase space Schrödinger equation

´

i~
B

Bt
´ pH

¯

Ψpq,p, t; ~q “ 0 , t P r0,T s ,

Ψpq,p, t “ 0; ~q “ Ψ0pq,p; ~q P F ,

governing the evolution of the phase space wavefunction (pswf)

Ψpq,p, t; ~q :“ pWψqpq,p, t; ~q

“

´

2π~
¯´d{2

ż

Rd

sGpq,pqpx ; ~qψpx , t; ~q dx
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Approximate phase space wave fucntion

By using the resolution of identity
´ 1

2π~

¯d
ż

Gpq,pqxGpq,pq, ‚y dqdp “ IL2‚ ,

and the approximate solution GZ
pq,pqpx , t; ~q of the problem

´

i~
B

Bt
´ pH

¯

ψpx , t; ~q “ 0 , t P r0,T s ,

ψpx , t “ 0; ~q “ ψ0px ; ~q “ sGpq,pqpx ; ~q ,

the approximation understood in the sense
›

›

›

´

i~
B

Bt
´ pH

¯

GZ
pq,pqp‚, t; ~q

›

›

›

L2pRd q
“ Op~3{2q , ~Ñ 0`

for the fixed time interval r0,T s gz
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Approximate phase space wave function

we construct the approximate pswf

Ψ „ ΨZpq,p, t; ~q “
ż

KZpq,p,η, ξ, t; ~qΨ0pη, ξ; ~q dηdξ

where

KZpq,p,η, ξ, t; ~q :“
´ 1

2π~

¯d
ż

sGpq,pqpx ; ~qGZ
pη,ξqpx , t; ~q dx .

is the approximate phase space propagator (Green’s fucntion).
kz
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Construction of approximate initial data

We assume WKB initial data for the Schrödinger equation (SE)

ψ0px ; ~q “ ψ~
0pxq :“ R0pxq e

i
~S0pxq , ~ ! 1 ,

S0 P C
8pRd ,Rq, det

´

B2S0

Bx2

¯

‰ 0 ,R0 P C
8
0 pRd ,Rq ,

ż

Rd

R2
0 dx “ 1 ,

and, by using the Stationary Complex Phase Theorem, we
approximate Ψ0 “Wψ0 for ~ ! 1 scpf

Ψ0pq,p; ~q „ Ψ~
0pq,pq:“ χ0pq,p; ~qq exp

˜

i

~
θ0pq,pq

¸
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Construction of approximate initial data

The amplitude χ0 and the phase θ0 are given by

χ0pq,p; ~q “ pπ~q´d{4
R0pzpq,pqq

c

det
´

I´ i B
2S0
Bz2 pzpq,pqq

¯

θ0pq,pq “ S0pzpq,pqq´p ¨
´

zpq,pq´q
¯

`
i

2

´

zpq,pq´q
¯2
´

p ¨ q
2

§ S0pzq and R0pzq are the almost analytic extensions to the
complex variable z “ x ` iy P Cd of S0pxq and R0pxq

§ z “ zpq,pq is the complex solution of

BS0pzq
Bz

´ p ` ipz ´ qq “ 0
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Fourier integral representation of the ps wavefunction

By using the approximate initial data, we further approximate

ΨZ „ Ψ~pq,p, tq “
´ 1

2π~

¯d
ż

ϕpη, ξ, t; ~q e
i
~F pq,p,η,ξ,tq dηdξ

where

F pq,p,η, ξ, tq “ θ0pη, ξq ` Apη, ξ, tq `
ξ ¨ η ´ ξt ¨ ηt

2

`
1

2
pq,pq ¨ Jpηt , ξtq `

1

2

ˆ

q ´ ηt

p ´ ξt

˙T

Qpη, ξ, tq
ˆ

q ´ ηt

p ´ ξt

˙

and

ϕpη, ξ, t; ~q “ pπ~q´d{4
´

det
Bpηt ´ iξtq

Bpη ´ iξq

¯´1{2
χ0pzpη, ξqq; ~q
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The narrow beam approximation
The ansatz

Narrow beam approximation of Ψ~ and the Ansatz

Applying Stationary Complex Phase Theorem to the Fourier
integral for Ψ~ we get a narrow beam approximation of the form

Ψ~
BpX , tq “ χpX , t; ~q e

i
~ ΦpX ,tq , X “ pq,pq

We use this approximation as an Ansatz to built an approximate
solution of PSSE. It follows that this Ansatz solves approximately
the PSSE

i~
BΨ~

B

Bt
´ pHΨ~

B “ Op~2q , Ψ~
BpX , 0q “ Ψ~

0pX , 0q “ χ0pX ; ~qe
i
~ θ0pX q

pswo
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The Ansatz

provided that the complex phase Φ solves the Hamilton-Jacobi
equation

BΦ

Bt
`H

´

X ,
BΦ

BX

¯

“ 0 , ΦpX , 0q “ θ0pX q ,

and the complex amplitude χ solves the transport equation

Bχ

Bt
´ J

BH

BX

´X
2
´ J

BΦ

BX

¯

¨
Bχ

BX
´

1

2
tr J

B2Φ

BX 2
J
B2H

BX 2

´X
2
´ J

BΦ

BX

¯

χ “ 0 ,

χpX , 0; ~q “ χ0pX ; ~q
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The narrow beam approximation
The ansatz

Construction of the wavepacket solution of PSSE

By using Maslov’s complex WKB method we construct

§ the phase Φ

ΦpX , tq “
!

θ0pX 0pαqq `
1

2
JX tpαq ¨ pX ´ X tpαqq ` Aw pX 0pαq, tq

`
1

2
pX ´ X tpαqq ¨ rQpα, tqpX ´ X tpαqq

)

α“αpX ,tq

psg

where
§ Aw is the symmetrized phase space action

Aw pX 0pαq, tq “ ApX 0pαq, tq´
ptpαq ¨ qtpαq ´ p0pαq ¨ q0pαq

2
.
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Construction of the wavepacket solution of PSSE

§ rQ solves a certain Riccati equation, and it is such that on any
compact set K outside some neighborhood ∆t of Λt

ImΦpX , tq ą C pKq ą 0

§ α “ αpX , tq is the unique solution of the system

pX ´ X tpαqq ¨
BX t

Bαj
pαq “ 0 , j “ 1, . . . , d

i.e., to every point X not belonging to, but in proximity to Λt ,
there exists a unique nearest point X tpαpX , tqq on Λt .
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Construction of the wavepacket solution of PSSE

§ the amplitude χ

χpX , t; ~q “

#

χ0pX 0pαq; ~q
a

detCpα, tq

+

α“αpX ,tq

it has compact support

where the matrix CpX ,P, tq is derived from the variational system
in double phase space

d

dt

ˆ

C
D

˙

“

ˆ

HPX HPP
´HXX ´HXP

˙ˆ

C
D

˙

CpX 0pαq,P0pαq, 0q “ I and DpX 0pαq,P0pαq, 0q “
B2θ0

BX 2
pX 0pαqq .
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The narrow beam approximation
The ansatz

Construction of the wavepacket solution of PSSE

The constructed solution

Ψ~
BpX , tq “ χpX , t; ~q e

i
~ ΦpX ,tq , X “ pq,pq

is a wavepacket moving in phase space thanks to the properties

ImΦpX , tq ą C pKq ą 0

and
χ has compact support

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrödinger equation



The problem: what we do and why
Derivation of the phase space Schrödinger equation

The narrow beam ansatz
End

The narrow beam approximation
The ansatz

Schematic description of the wavepacket in phase space
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Some final remarks

§ The accuracy of the approximation have been systematically
studied for linear and quadratic potential (even in these simple
cases the application of stationary complex phase formula is
non trivial due to the needed almost analytic continuations)

§ Open problem: Construction of eigenfunctions of PSSE which
do not belong to the Fock-Bargmann space, i.e. ”generalized
eiagenfunctions” needed to built scattering solutions

§ Most of the results are described in
§ Asymptotic approximations for the phase space Schrödinger
equation, J. Phys. A: Math. & Theor., 2022

§ Construction of the Van Vleck formula using the wave packet
transform, submitted
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Thank you very much for your attention!!
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Explicit form of GZ

The explicit form of GZ is

GZ
pq,pqpx , t; ~q “ pπ~q´d{4apq,p, tq

ˆ exp
i

~

´p ¨ q
2

` Apq,p, tq ` pt ¨ px ´ qtq `
1

2
px ´ qtq ¨Zpx ´ qtq

¯

,

where

§ pqt ,ptq: the solution of the Hamiltonian system

dqt

dt
“
BH

Bp
,

dpt

dt
“ ´

BH

Bq
, pq0,p0q “ pq,pq ,
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Explicit form of GZ

§ Z: solution of the Riccati equation

dZ
dt

`Z Hpp Z ` Hqp Z `Z Hpq ` Hqq “ 0 , Zp0q “ i I

§ a: amplitude

apq,p, tq “ exp

˜

´
1

2

t
ż

0

!

tr
´

Hpp Zpq,p, τq
¯

` Hpq

)

dτ

¸

§ Apq,p, tq: phase space action along the trajectory pqt ,ptq

Apq,p, tq “
t
ż

0

pτ ¨
dqτ
dτ

dτ ´ Hpq,pq t .

gzback

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrödinger equation



The problem: what we do and why
Derivation of the phase space Schrödinger equation

The narrow beam ansatz
End

Final remarks

Explicit form of KZ

By direct Gaussian integration

KZpq,p,η, ξ, tq “
´ 1

2π~

¯d´

det
Bpηt ´ iξtq

Bpη ´ iξq

¯´1{2

ˆ exp
i

~

#

Apη, ξ, tq `
ξ ¨ η ´ ξt ¨ ηt

2
`

1

2
pq,pq ¨ Jpηt , ξtq

`
1

2

ˆ

q ´ ηt

p ´ ξt

˙T

Q
ˆ

q ´ ηt

p ´ ξt

˙

+

where

Qpη, ξ, tq “
ˆ

iI´ ipI´ iZq´1 1
2 I´ pI´ iZq´1

1
2 I´ pI´ iZq´1 ipI´ iZq´1

˙

kzback
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Stationary Complex Phase Formula

Theorem. (Nazaikinksii et al., Melin & Sjostrand)Consider the
oscillatory integral

ˆ

1

2π~

˙m{2 ż

Rm

e´
1

2~x ¨Mx` i
~p¨x dx “

1
?

det M
exp

´

´
1

2~
p¨M´1p

¯

.

I pp; ~q, with s ě 1, amplitude a : Rm Ñ C and phase
Φ : Rn ˆ Rm Ñ C of class C s in p, where a is compactly
supported and Φ possesses an everywhere non-negative imaginary
part on supp a, so that, for given p P Rn, the equations

ImΦpp, xq “ 0 ,
BΦ

Bx
pp, xq “ 0

have at most a single solution on supp a,
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Stationary Complex Phase Formula

while the Hessian matrix

B2Φ

Bx2
pp, xq

is non-singular for all pp, xq P Rn ˆ supp a.
Then, for all r “ 0, . . . , s, the following estimate holds as ~Ñ 0`

I pp; ~q “
rapp, zppqq

b

det ´ B2 rΦ
Bz2 pp, zppqq

e
i
~

rΦpp,zppqq

˜

1` op~q

¸

where
?
‚ is the principal branch of the square root function, the

left superscript r denotes the r -analytic extensions of a function to
the complex variable z “ x ` iy ,
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Stationary Complex Phase Formula

and z “ zppq is the unique complex solution of the equation

B rΦ

Bz
pp, zq “ 0 .

In addition, there exists c ą 0 such that for all p P Rn

ImΦpp, zppqq ě c |Im zppq|2 . scpfback
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Phase space Weyl operator

The action of pH “W pHW´1 on the phase space wavefunction Ψ
is given in integral form by

pHΨpX q “
´ 1

2π~

¯2d
ż

e
i
~P¨pX´Y qHpX ,Pq

´X ` Y
2

,P
¯

ΨpY q dY dP

where the Weyl symbol

HpX ,Pq :“ H
´q

2
´v ,

p
2
`u

¯

“ H
´X

2
´ JP

¯

, X “ pq,pq ,P “ pu, vq

of the operator pH is defined on the doubled phase space pswoback
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Some phase space geometry

Lt “
!

X “ X tpαq, P “ Ptpαq “
1

2
JX tpαq , α P Rd

)

is the solution of the Hamiltonian system

dX
dt

“
BH
BP

,
dP
dt

“ ´
BH
BX

, t ě 0

generated by the Hamiltonian HpX ,Pq “ H
´

1
2X ´ JP

¯

in double

phase space pX “ pq,pq,P “ pu, vqq P R2d ˆ R2d , with initial
conditions

X |t“0 “ X 0pαq P Λ0 , P|t“0 “ P0pαq :“
Bθ0

BX
pX 0pαqq “

1

2
JX 0pαq ,
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Some phase space geometry

 

George N. Makrakis (collaboration with Panos Karageorge) Wavepacket solutions of the phase-space Schrödinger equation



The problem: what we do and why
Derivation of the phase space Schrödinger equation

The narrow beam ansatz
End

Final remarks

Some phase space geometry

where Λ0 is the Lagrangian manifold generated by the phase of the
initial data for (SE),

Λ0 :“
!

X 0 “ pq,pq P R2d |p “
BS0

Bx
pqq

)

,

described in appropriately chosen parametrization

X 0 “ X 0pαq ,α P Rd .

It is helpful to observe that the projection of Lt to the phase space
is

Λt “

!

X “ X tpαq , α P Rd
)

,

that is, the image of Λ0 under the Hamiltonian flow in phase
space. psgback
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