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Introduction

In dynamics of particulate flows/polymers: two widespread theories:

Smoluchowski theory of diffusion (developed around 1905) that
describes motion of particles in a friction dominated regime

dx = −∇V (x)dt + dB

Kramers and Kirkwood theory (developed between 1940-1950) based
on models of Hamiltonian dynamics for many particle systems

dx = v dt

dv = −∇V (x)dt − 1
εv + dW

The passage from the latter to the former is called Kramers to
Smoluchowski approximation.

High friction or small mass approximation
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Euler flows generated by an energy functional

Hamiltonian Systems driven by an energy E(ρ)

∂tρ+ div (ρu) = 0

ρ
Du

Dt
= −ρ∇x

δE
δρ

I E [ρ] is an energy functional, e.g. E(ρ) =
∫
h(ρ) + κ(ρ) |∇(ρ)|2dx

High friction limit from Hamiltonian flows to gradient flows

∂tρ+ div (ρu) = 0

ε2ρ
Du

Dt
= −ρ∇x

δE
δρ
− ρu
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Part I, Euler flows generated by an energy functional

∂tρ+ div (ρu) = 0

ρ
Du

Dt
= ρ
(
∂tu + (u · ∇)u

)
= −ρ∇x

δE
δρ

where E [ρ] is a functional

Hamiltonian

H(ρ, u) = E(ρ) +

∫
1
2ρ|u|

2dx

∂

∂t

(
ρ

u

)
=

(
0 −div

−∇ 0

)( δH
δρ

δH
δu

)
+

(
0

1
ρ
δH
δu × curl x( 1

ρ
δH
δu )

)
.

d

dt
H(ρ, u) = 0
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ex: the quantum hydrodynamics system

∂tρ+ div (ρu) = 0

∂t(ρu) + div (ρu ⊗ u) = −∇p(ρ) + 2ρ∇
(
4√ρ
√
ρ

)
+ ρ∇c

−4c = ρ− ρ̄

generated by the energy

E(ρ) =

∫
h(ρ) + 1

2

1

ρ
|∇ρ|2 + 1

2ρ c

with ρh′′(ρ) = p′(ρ)
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why this structure ?

ρ(ξ),  Ω 0

x(ξ, t)
ε

ρ Ωε

ε
(x,t)

ξ x

Family of maps

xε(ξ, t) −→

{
uε(x , t)

ρε(x , t)

ρε = xε#ρ̄ , ∂tρ
ε + div x(ρεuε) = 0

Find extrema of the action L over xε such that ρε(·, t1) = ρ1, ρε(·, t2) = ρ2

L[xε] =

∫ t2

t1

∫
Ωε=xε(Ω0)

1
2ρ
ε|uε|2dxdt −

∫ t2

t1

E
[
ρε(·, t)

]
dt
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It turns out
xε(ξ, t) = x(ξ, t) + εδx(ξ, t)

δx(ξ, t) = δφ(x(ξ, t), t)

dρε

dε

∣∣∣
ε=0

= −div x(ρδϕ)

d

dε

∣∣∣
ε=0

(∫ t2

t1

E
[
ρε(·, t)

]
dt
)

=

∫ t2

t1

〈δE
δρ
,
dρε

dε

∣∣∣
ε=0

〉
dτ

=

∫ t2

t1

〈
ρ∇x

δE
δρ
, δϕ
〉
dτ

Obtain the equations:

∂tρ+ div (ρu) = 0

ρ
Du

Dt
= −ρ∇x

δE
δρ
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E(ρ|ρ̄) := E(ρ)− E(ρ̄)−
〈
δE
δρ

(ρ̄), ρ− ρ̄
〉

under hypothesis that E(ρ) is convex in ρ

Relative energy calculation

d

dt

(∫
1
2ρ|u − ū|2 dx + E(ρ|ρ̄)

)
=

∫
−ρ∇x ū : (u − ū)⊗ (u − ū)

+

∫
∇ū : S(ρ|ρ̄) dx

where

E(ρ|ρ̄) := E(ρ)− E(ρ̄)−
〈
δE
δρ

(ρ̄), ρ− ρ̄
〉

S(ρ|ρ̄) := S(ρ)− S(ρ̄)−
〈
δS

δρ
(ρ̄), ρ− ρ̄

〉
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abstract relative energy computation based on

Hypothesis : E(ρ) satisfies for some functional S [ρ]

− ρ∇x
δE
δρ

= ∇x · S [ρ](*)

Formula (*)

gives meaning to weak solutions

serves as the basis for the relative energy calculation

Invariance of E(ρ) under translations ρ(·)→ ρ(·+ h)
plus Noether’s theorem implies (*)
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Application to the quantum hydrodynamics system

∂tρ+ div (ρu) = 0

∂t(ρu) + div (ρu ⊗ u) +∇p(ρ) = 2ρ∇
(
4√ρ
√
ρ

)

Thm If (ρ, u) is a weak conservative solution and (ρ̄, ū) smooth conservative soln
of QHD then

Ψ(t) =

∫
1
2ρ|u − ū|2 + h(ρ|ρ̄) + 1

2ρ
∣∣∣∇ρ
ρ
− ∇ρ̄

ρ

∣∣∣2dx
satisfies the stability estimate

Ψ(t) ≤ Ψ(0) + O(|∇ū|)
∫ T

0

Ψ(τ)dτ

Gieselmann - Lattanzio - T 16 Bresch-Gisclon-Violet 18
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Part II, From Euler flows to gradient flows

Euler flow with high-friction (small-mass approx form)

∂tρ+ div (ρu) = 0

∂t(ρu) + div (ρu ⊗ u) = − 1

ε2
ρ
(
u +∇x

δE
δρ

)
energy dissipation

∂t

(
E [ρ] +

∫
ε2

2
ρ|u|2dx

)
+

∫
ρ|u|2dx = 0

ε→ 0 limit Diffusion theory

∂tρ+ div (ρu) = 0 u = −∇x
δE
δρ

E [ρ] is a convex functional

∂tE [ρ] +

∫
ρ
∣∣∣∇x

δE
δρ

∣∣∣2dx = 0 energy dissipation
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Relative entropy for the relaxation system and the limiting diffusion theory

Let (ρ, u) be an entropy weak solution and (ρ̄, ū) a strong conservative solution of
the Euler relaxation system

d

dt

(
E(ρ |ρ̄ ) +

∫
ε2

2
|u − ū|2dx

)
+

∫
ρ|u − ū|2dx

= −
∫ (

ε2ρ∇x ū : (u − ū)⊗ (u − ū) +∇ū : S(ρ |ρ̄ )
)
dx

used to compare (ρ, u) and (ρ̄, ū) and to establish convergence results from
relaxation system to diffusion theory

Lattanzio - AT 17
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example Bipolar Euler-Poisson model, two electrically charged fluids

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu ⊗ u) +∇p1(ρ) = −ρ∇φ− 1

τ
ρu

nt +∇ · (nv) = 0

(nv)t +∇ · (nv ⊗ v) +∇p2(n) = n∇φ− 1

τ
nv

−∆φ = ρ− n

Energy identity

d

dt

(∫
1
2ρ|u|

2 + 1
2n|v |

2 dx + E(ρ, n)

)
+

1

τ

∫
ρ|u|2 + n|v |2 dx

E(ρ, n) =

∫
Ω

h1(ρ) + h2(n) +
1

2
|∇φ|2dx ,

−∆φ = ρ− n

Alves - AT, 20
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from bipolar Euler-Poisson to drift-diffusion

Convergence as τ → 0 to the bipolar drift-diffusion model used in the analysis of
semiconductors (after scaling t → t

τ , u → τu, v → τv)


ρt = ∇ ·

(
∇p1(ρ) + ρ∇φ

)
nt = ∇ ·

(
∇p2(n)− n∇φ

)
−∆φ = ρ− n.

Thanos Tzavaras (KAUST ) Euler to Gradient flows Athens, Makis July 22 14 / 19



Part III, Diffusion as Gradient Flow in Wasserstein

∂tρ+ div (ρu) = 0 u = −∇x
δE
δρ

Examples: porous media, generalized Keller-Segel models, Cahn-Hilliard
equation fit under this framework for various choices of E [ρ]

Otto, Carillo-Toscani, Villani, Westdickenberg, Ambrosio-Gigli-Savare ...

Diffusion theory arises by variational minimization based on Wasserstein
distance, Jordan-Kinderlehrer-Otto scheme

ρn+1 is the minimizer of the problem min

{
1

2τ
dW (ρ, ρn)2 + E [ρ]

}

Brenier-Benamou formula

dW (ρ0, ρ1)2 = inf
(ρ,u)

{
τ

∫ τ

0

∫
ρ|u|2 dxdt

∣∣∣ ∂tρ+ div ρu = 0

ρ(0) = ρ0 , ρ(τ) = ρ1

}
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∂tρ = div
(
A(x)∇ρ

)
A(x) > 0 and symmetric

= div
(
ρA(x)∇δE

δρ

)
E(ρ) =

∫
ρ ln ρ dx

Visualize this diffusion as

∂tρ+ div (ρu) = 0 u = −A(x)∇δE
δρ

small mass approximation of the Euler system

∂tρ+ div (ρu) = 0

ε2ρ
(∂u
∂t

+ (u · ∇)u
)

= −
(
ρB(x)u + ρ∇δE

δρ

)
B(x) = A−1(x) > 0

∂t

(
E [ρ] +

∫
ε2

2
ρ|u|2dx

)
+

∫
ρu · B(x)udx = 0
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∂tρ = div
(
A(x)∇ρ

)
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= div
(
ρA(x)∇δE

δρ
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ε2ρ
(∂u
∂t

+ (u · ∇)u
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(
ρB(x)u + ρ∇δE

δρ

)
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∂t

(
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ε2

2
ρ|u|2dx
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Analog of the Brenier-Benamou formula

WA(ρ0, ρ1)2 = inf
(ρ,v)

{
τ

∫ τ

0

∫
v · B(x)v ρdxds

∣∣∣ ∂sρ+ div ρv = 0

ρ(0) = ρ0 , ρ(τ) = ρ1

}

minimum is achieved

B(x) = (∇xb)T (∇xb) b : (Rd ,B)→ (RN ,Euclidean)
secured by isometric embedding theorem of Nash-Kuiper

defines a 2-Wasserstein distance associated to the friction matrix A(x)
(or the mobility matrix B(x))

H. Liu - AT 22
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Analog of the Jordan-Kinderlehrer-Otto scheme

ρn+1 is the minimizer of the problem min
ρ∈K

{
1

2τ
WA(ρ, ρn)2 +

∫
ρ ln ρ dx

}

Variational scheme approximates implicit Euler Scheme of the form

ρn+1 − ρn

τ
= div x

(
ρn+1A(x)∇x

δE
δρ

(ρn+1)
)

and as τ → 0, ρτ (x , t)→ ρ(x , t) with

∂tρ = div
(
ρA(x)∇ ln ρ

)
Lisini 09
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Dedicated with friendship to Makis Athanassoulis

the Stalker of our youth

Stalker a film by Andrei Tarkovsky

A guide leads two men through an area known as the Zone to find a room
that grants wishes.
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