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1. IGA-BEM 3D lifting flows



the problem and its model

velocity potential

inviscid and icompressible fluid

irrotational flow in the exterior of the
propeller/hub boundaries and an
a-priori unknown wake

moving frame fixed on the propeller
blade: V∞ = Vin + Ω× r

V =
(
∂Φ
∂x ,

∂Φ
∂y ,

∂Φ
∂z

)
Φ = φ+ φ∞
φ: perturbation velocity potential
φ∞: velocity potential at infinity

52Φ = 0: Laplace field equation



the problem and its model

boundary conditions (bc’s)

kinematic bc on SB ∪ SH :
∂φ
∂n = −V∞ · n
SB : blade boundary

SH : hub bounsary

non linear dynamic bc on SW

SW : wake boundary

∆p = pu − pl = 0, p: pressure

linear kinematic bc on SW :
∂φu
∂n −

∂φl
∂n = 0



isogeometric boundary element method (IGA-BEM)

blade SB and wake SW will be represented as (bicubic)
T-spline surfaces for supporting local refinability

NURBS (left) knot lines lie on a global rectangular grid

T-splines (right) can form T-junctions due to locally defined
knot vectors

subject to the condition of: analytical suitability
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Figure 1: NURBS (left) knot lines lie on a global rectangular grid, while T-splines (right)

can form T-junctions due to locally defined knot vectors. Extraneous knot lines in NURBS

are depicted with black dotted line. Examples of parametric faces depicted in red diagonal

stripe pattern: one face (rightmost) with 5 vertices (four corner vertices and one T-junction

vertex) and two faces with four corner vertices. Note that all faces, in both the NURBS and

the T-splines mesh, are rectangular.

design. On the contrary, it is not unlikely that T-splines are capable to represent

the same shapes with a single patch. In addition, refinement with NURBS

generates superfluous control points, as NURBS must lie topologically on a

rectangular grid, which is not the case in T-splines due to the fact that they155

permit T-junctions. Although, T-splines are not totally free of superfluous

control points. Furthermore, in various cases, trimming of NURBS surfaces

cannot be avoided. A curve stemmed by trimming is generally not a NURBS

curve, therefore approximation is needed to represent it. On the other hand,

T-splines are able to represent such surfaces without trimming with the aid of160

T-junctions [29]. In addition, T-splines can produce a valid merging of multiple

NURBS patches into a watertight surface without gaps, see, e.g., Fig. 3 in [14].

Given a T-mesh in the parametric space and a valid knot-interval configuration,

we describe the process of creating the T-splines bicubic basis corresponding,

e.g., to the vertex V0 depicted in Fig. 2, as follows:165

(i) Starting from the vertex V0, the horizontal knot vector is obtained by
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IGA-BEM: parametric plane → manifold

(a) TE DoFs=5 (b) TE DoFs=7

(c) TE DoFs=11 (d) TE DoFs=19

(e) TE DoFs=35

Figure 8: Different Trailing Edge Representations
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IGA-BEM: boundary integral equation (BIE)

2nd Green’s identity & kinematic bc’s yield:

2πφ(P)−
∫
SH+SB

φ(Q)
∂G (P,Q)

∂n
dS −

∫
SW

∆φ(Q)
∂G (P,Q)

∂n
dS

=

∫
SH∪SB

(V∞ · n)G (P,Q)dS , P∈SH ∪ SB\TE ,

3D Laplace basic singularity: G (P,Q) = 1
4π r
−1(P,Q)

φ(P): potential on boundary surface

∆φ = φu − φl : potential jump on wake

TE = SB ∩ SW : propeller’s blade trailing edge from which
wake emanates



IGA-BEM: employing the isogeometric concept

the pertubation potential φ(P) on the blade SB is projected
on the same spline space used for the blade representation

for the pertubation potential φ(P) on the wake SW :

using Kelvin’s theorem we have that ∆φ(P) depends only on

its trace ∆̂φ(s2) on TE parametrised wrt s2

∆̂φ(s2) is projected on the trace of the blade spline space on
TE



IGA-BEM: projecting the BIE on the spline space

we get

2π

nB∑
i=1

φi R̃i (P)−
nB∑
i=1

φi

eB∑
e=1

∫
SB,e

R̃i (Q)
∂G (P,Q)

∂n(Q)
dS(Q)

−
nB,TE∑

1

∆̂φi

∫
SW

R̃i (ξTE , η)
∂G (P,Q)

∂n(Q)
dS(Q) =

−
eB∑
e=1

∫
SB,e

V∞ · n(Q)G (P,Q)dS(Q), P ∈ SB\TE

R̃i (Q(u, v)): T-spline basis



IGA-BEM: collocating at nB Greville points

the spline-projected BIE yields nB equations

2π

nB∑
i=1

φi R̃i (Pj)−
nB∑
i=1

φi

eB∑
e=1

∫
SB,e

R̃i (Q)
∂G (Pj ,Q)

∂n(Q)
dS(Q)

−
nB,TE∑

1

∆̂φi

∫
SW

R̃i (ξTE , η)
∂G (Pj ,Q)

∂n(Q)
dS(Q) =

−
eB∑
e=1

∫
SB,e

V∞ · n(Q)G (Pj ,Q)dS(Q),

Pj ∈ SB\TE , j = 1, ..., nB



IGA-BEM: remainig bc’s to be satisfied

zero pressure-jump on the TE: ∆p|TE = 0

zero pressure-jump on the wake: ∆p|SW = 0

assuming that the wake surface is known and collocating
∆p|TE = 0 at nB,TE points on TE, we get a system of
quadratic equations with respect to the unknowns
Φ ={φi , i = 1, ..., nB , ∆̂φj , j = 1, ..., nB,TE}
combining the above set with the linear system obtained by
collocating the BIE, we get a quadratic system S(Φ) = 0 of
nB + nB,TE equations for the nB + nB,TE unknowns Φ

S(Φ) = 0 is solved with Newton-Raphson using as starting
point the solution of the collocated BIE resulting from
applying the Kutta-Morino condition



IGA-BEM: Kutta condition for a NACA 3D wing

pressure near the tip (top) and at the tip (bottom)



IGA-BEM: next steps

a priori unknown wake surface SW

its control points DW = {de,W , e = 1, ..., nW } should be
included in the unknowns

new set of unknowns: Φ ∪ DW

to be determined by adding to the quadratic system S(Φ) = 0
the zero pressure-jump condition on the wake:
∆p|SW (Φ ∪ DW) = 0



IGA-BEM: next steps

expand the capacity of the basis

singularities along edges and at vertices:

wing-tap-intersection: ∇φ = O(r−
1
3 )

at the TE-tip: ∇φ = O(r−
1
2 )

α=3π/2 
wake 

TE (trailing edge) 

wing: pressure-side 

α=3π/2 

α=2π 

TE-tip 

wing: cap 

wing: suction-side 

x 

y 
z 

P(x) 

P(x=ΤΕx) 



2. The interoperability problem



the workflow in CAD-SIM-OPT loop



Dimensionality Reduction: literature

Karhunen-Loève Expansion (KLE)

Principal Component Analysis (PCA)

proper orthogonal decomposition and their non-linear
extensions, such as

� kernel PCA
� LLE (Locally Linear Embedding)
� ISOMAP

Machine Learning-based approaches:

� auto-encoders,
� Generative-Adversarial Networks (GANs) and variations



literature: limitations

inability to preserve the shape’s complexity and intrinsic
underlying geometric structure:
the resulting subspace lacks the representation capacity and
compactness
defined as subspace’s ability to produce diverse and valid
shapes with least number of latent variables when being
explored for shape optimisation
these deficiencies can hamper the success of the optimiser as it
may spend the majority of the available computational budget
on exploring infeasible, practically invalid and similar shapes
the basis of the subspace is solely formulated with geometric
features and no information related to physics, against which
designs are assessed, is incorporated
these techniques’ inability is also strengthened from the fact
that the geometry representations, used in subspace learning,
are commonly low-level shape discretisations



our objectives

a shape-supervised approach, which combines continuous
geometry modification with geometric moments to harness
the compact geometric representation of baseline shape and
complement its physics during dimensionality reduction

therefore, the resulting subspace has not only enhanced
representation capacity and compactness to produce a valid
and diverse set of design alternatives, respectively, but

is also physically informed to improve the convergence rate of
the shape optimiser towards an optimal solution



literature: about moments

geometric moments are coupled with physics as they provide
the geometric foundation for different physical analyses

like physics, provide important clues about the distribution of
volume and validity of the design

their evaluation is substantially less expensive

already used in literature for:

shape processing tasks such as object recognition

rigid body transformation

parametric sensitivity analysis

material field modelling

governing equations of motion for flow around a body

moment-based shape representations are used to aid the
interoperability between CAD representations and physics



test case: the DTMB hull model

The DTMB (David Taylor Model Basin) 5415 hull model is a
widely used benchmark ship employed in shape optimisation

this parent model is considered for the minimisation of the
ship hull’s wave-making resistance coefficient Cw

Cw constitutes a considerable part of the ship’s total
resistance: it corresponds to the energy consumed to generate
the free-surface waves



test case: hydrodynamics-moments correlation

the flow around a slender ship moving on the free surface with
a constant velocity can be represented by using an appropriate
source-sink distribution along its centre plane

the strength of these sources is proportional to the
longitudinal rate of change of the ship’s cross-sectional area
and this aspect can be well captured by geometric moments,
especially those of higher order

an early derivation for the evaluation of Cw for slender ships,
known as Vosser’s integral, reveals explicit dependence on the
longitudinal derivative of the cross-sectional area, i.e.,
S ′(x) = d

dx S(x) where S(x) =
∫

Φ(x) dydz is the

cross-sectional area, and Φ(x) denotes the cross-section of a
ship hull at the longitudinal position x .



test case: hydrodynamics-moments correlation

Let now mp =
∫ L
o xpS ′(x)dx be the p−th order moment of

S ′(x)

assuming now that S(0) = S(L) = 0 we get: which leads to

mp = −pMp−1,0,0,

where Mp−1,0,0 is a component of the hull’s geometric
moments vector of order s = p + q + r = p − 1;

thus, p−order 1D moments of S ′(x) are directly linked to
(p − 1)−order 3D longitudinal moments of the hull

thus our design vector is augmented with a physics-informed
part expressed by geometric moments



test case: hydrodynamics-moments correlation

note that one cannot expect that every physical QoI of
integral character is strongly connected with the geometric
moments of the body
thus, the usage of moments cannot guarantee a
physics-informed subspace
e.g., viscous-pressure resistance is expressed as an integral
over the wetted surface of the body
nevertheless, it depends on local properties of the surface,
such as smoothness and curvature, which can act as
turbulence generators by triggering flow separation
however, even if there is no strong connection of physics
under consideration with geometric moments, their usage can
still provide a high-level intrinsic geometric information of the
shape’s geometry, which is imperative to learning an efficient
subspace with enhanced representation capacity and
compactness.



test case: results
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Figure 1: percentage of variance retained by each of the hull model’s
subspace versus its dimension - the horizontal red line indicates the 95%
threshold.



test case: results

Figure 2: diversity measure: Average of Hausdorff distance between
baseline designs and 5,000,000 designs from V



test case: results
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Figure 3: average percentage of invalid hull designs in VG, VG,Cw and
shape-supervised subspaces sampling with global- and composite-SSVs
when bounded by two different approaches



test case: results
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subspaces with global-SSV



Any Questions?
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