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Formulation of the problem

Formulation of the problem

We consider a two-dimensional body whose boundary is ∂ΩB, moving with
constant speed U⃗B in an ideal fluid of infinite extent.

In a body-fixed coordinate system Oxy this problem is equivalent to a
uniform stream with velocity ∇Φ∞ = U⃗∞ = −U⃗B, where
Φ∞(P) = u∞x + v∞y is the far-field asymptotic form of the velocity
potential Φ(P) of the resulting flow at point P=(x , y).
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Formulation of the problem
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Formulation of the problem

Differential formulation

The potential Φ(P) is the solution of the following boundary-value
problem (BVP):

∇2Φ = 0, P = (x , y) ∈ Ω, (1)
∂Φ
∂n = 0, P ∈ ∂ΩB, (2)

Φ − (u∞x + v∞y) → 0, as x2 + y2 → ∞, (3)

where Ω is the fluid domain outside ∂ΩB and n⃗ denotes the unit normal
vector on ∂ΩB directed inwards with respect to the body.
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Formulation of the problem

Wake

The above BVP has a unique solution up to an additive constant and, in
order to fix a unique solution, we normally consider, for smooth bodies,
zero circulation Γ(C) =

∫
C ∇Φ·dc of the velocity field ∇Φ over any circuit

C surrounding the body.

The difference between potential flows around a smooth body and a
hydrofoil is that, in order for the flow around the hydrofoil to have a
physical meaning, the circulation has to be nonzero and appropriately
adjusted until the flow leaves the trailing edge smoothly.

More specifically, on the basis of Kelvin’s theorem, Prandtl concluded that
if an airfoil, which started its motion from rest in an ideal fluid, is later
found to possess non-zero circulation Γ, then the component of the
boundary of the fluid which coincided with the airfoil initially, must
coincide at a later time with the union of the airfoil surface and a surface,
the so-called wake, embedded in the fluid which has circulation −Γ.
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Formulation of the problem

Wake

In contrast to the 3D case, the location and shape of the wake in the 2D
case can be taken, without loss of generality, to be a straight line
emanating from the trailing edge and extending to infinity. This line is a
force-free boundary along which the normal fluid velocity and the pressure
should exhibit no jump. More accurately, we can write:

∂Φ+

∂n =∂Φ−

∂n , P ∈ ∂Ωw : kinematic boundary condition, (4)

p+ =p−, P ∈ ∂Ωw : dynamic boundary condition (5)

where, Φ± / p± denote the velocity potential / pressure on the upper,
∂Ωw+ , and lower, ∂Ωw− , face of the wake boundary, respectively.
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Formulation of the problem

Boundary Integral Equation Formulation

Applying in Ω Green’s second identity between the potential Φ(P), P∈Ω,
and the fundamental solution, G(P, Q) = (1/2π) ln ∥P − Q∥, of the 2D
Laplace equation, we can reformulate the BVP as a 2nd -kind Fredholm
integral equation on the hydrofoil boundary ∂ΩB, taking into account the
wake-sheet kinematic boundary condition:

Φ(P)
2 −

∫
∂ΩB

Φ(Q)∂G(P, Q)
∂nQ

dsQ − µw

∫
∂Ωw

∂G(P, Q)
∂nQ

dsQ = Φ∞(P),

P ∈ ∂ΩB\PTE , (6)

where µw denotes the circulation around the hydrofoil and PTE = (xe , ye)
its trailing edge.
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Formulation of the problem

Elaboration of wake-term
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2π
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revealing that the influence of the wake to the fluid flow is equivalent to a
point vortex located at the trailing edge.
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Formulation of the problem

Kutta conditions

In order to solve the lifting problem we have to specify the Kutta condition
at the trailing edge.

Kinematic Kutta Condition: The equation

µw = Φ+(PTE ) − Φ−(PTE ). (8)

is the so-called Morino-Kutta condition, stating that the proper value
of circulation Γ around the hydrofoil equals to the potential jump at
the trailing edge.
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Formulation of the problem

Kutta conditions

Dynamic Kutta Condition: The zero pressure jump at the trailing
edge (p+

TE = p−
TE ) is another form of the Kutta condition (see eq. 5).

This is equivalent to the statement that the total velocities on the
upper and lower faces of the trailing edge should be equal.(

∂Φ+(PTE )
∂s

)
=
(

∂Φ−(PTE )
∂s

)
(9)

We recall here that in the case of a hydrofoil with finite trailing-edge
angle the velocities at the trailing edge should be zero. However, this
requirement seems to be very stiff, from the numerical point of view,
and may be relaxed to the condition of equal velocity amplitudes on
the upper and lower faces of the trailing edge, which may be finite.
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Formulation of the problem

Kutta conditions

Mixed Kutta Condition: It is a combination of the kinematic and
dynamic Kutta conditions.

µw = Φ+(PTE ) − Φ−(PTE ). (10)

p+
TE = p−

TE (11)

In this case the resulting linear system has to be solved in the least
square sense.
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A discrete IGA-BEM formulation

The IGA basis

We assume that the body boundary ∂ΩB can be (accurately) represented
as a closed parametric NURBS curve r(t), t ∈ [0, 1], which is regular, i.e.,
the derivative vector is well defined and not vanishing, with the exception
of the trailing edge: r(0) = r(1), where the derivative vector is not defined.
More specifically,

r(t) = (x(t), y(t)) :=
n∑

i=0
diMi ,k(t), t ∈ I = [tk−1, tn+1] := [0, 1], (12)

where {Mi ,k(t)}n
i=0 is a rational B−spline basis of order k, defined over a

knot sequence J = {t0, t1, . . . , tn+k} and possessing non-negative weights
wi , i = 0, . . . , n, while di are the associated control points.
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A discrete IGA-BEM formulation

The Boundary-Integral Equation

The Boundary-Integral Equation is written in the following form:

ϕ(t)
2 −

∫
I
ϕ(τ)K (t, τ)dτ − µw

2π
arctan

(y(t) − ye
x(t) − xe

)
= g(t), t ∈ (0, 1),

(13)
where, for the sake of simplicity, we define
ϕ(t) := ϕ(r(t))
G(t, τ)) := G(r(t), r(τ)) and
K (t, τ) = (∂G(t, τ)/∂nτ )∥ṙ(τ)∥
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A discrete IGA-BEM formulation

A spline space for the perturbation potential ϕ(t)

We project, in a suitably defined manner, the perturbation potential ϕ(t)
on the spline space Sk(J (ℓ)), Sk(J (0)) := Sk(J ), expressed in the form:

ϕs(t) := Ps(ϕ(t)) =
n+ℓ∑
i=0

ϕiM(ℓ)
i ,k (t), t ∈ I, M(0)

i ,k (t) := Mi ,k(t), (14)

where ℓ ∈ N0 denotes the number of knots inserted in I.

Recalling the fundamental property of knot insertion, we can say that
{Sk(J (ℓ)), ℓ∈N0} constitutes a sequence of nested finite
dimensional-spaces, i.e., Sk(J (ℓ)) ⊂ Sk(J (ℓ+1)).
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A discrete IGA-BEM formulation

Discretization of the BIE

The projection of ϕ(t) on Sk(J (ℓ)) is materialized through interpolation
at a set of collocation points t = tj , j = 0, . . . , n + ℓ, which are chosen to
be the Greville abscissas. This leads to the following linear system for the
unknown coefficients ϕi , i = 0, . . . , n + ℓ:

1
2

n+ℓ∑
i=0

ϕiM(ℓ)
i ,k (tj) −

n+ℓ∑
i=0

ϕiqi(tj) − µw
2π

arctan
(

y(tj) − ye
x(tj) − xe

)
= g(tj),

j = 0, . . . n + ℓ, (15)

where qi(tj) =
∫

I M(ℓ)
i ,k (τ)K (tj , τ)dτ .

Since t ∈ (0, 1), one must consider shifting the values of the first and the
last Greville abscissa by a small value ϵ > 0.
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Numerical Results

Figure: Cp along the hydrofoil. Fluid velocities at the trailing edge are enforced to
be zero.
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Numerical Results

Figure: Cp along the hydrofoil, using different Kutta conditions.
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Numerical Results

Figure: Cp along the hydrofoil, using different Kutta conditions. Zoom at the
trailing edge.
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Numerical Results

Error rate of convergence

Figure: Error of CL of a NACA 4412 hydrofoil wrt DoF. Reference solution is
calculated by IGA-BEM with a large number of DoFs (≊ 5000).
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Boundary-layer corrections

Boundary-layer (BL) model

For an incompressible turbulent flow past an airfoil viscous effects are
important in a small region around the foil
In this region N-S (Navier-Stokes) equations are approximated by the
so-called BL equations
The BL model composes:

1 A model for the laminar part of the flow
2 A criterion for the transition point between the laminar and the

turbulent flow
3 A model for the turbulent part of the flow
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Boundary-layer corrections

A one-way coupled computation model

We adopt a simple one-way coupled computation model consisting of:
Thwaites’ one equation for laminar flow
Head’s two equations for turbulent flow
Michel’s criterion for the transition point
Squire-Young formula for the drag coefficient
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Boundary-layer corrections

Laminar model: Thwaites’ one equation

Von-Karman integral momentum equation

dθ

dx + (2 + H) θ

Ue
· dUe

dx = 1
2Cf (16)

x/y are curvilinear coordinates measured tangentially/normal to the
airfoil boundary from the stagnation point
Ue(x) is the free-stream velocity outside the boundary layer

θ =
∫ ∞

0

u
Ue

· (1 − u
Ue

)dy : momentum thickness (17)

H = δ∗

θ : shape factor, δ∗ =
∫∞

0 (1 − u
Ue

)dy : displacement thickness

Cf =
µ∂u

∂y |y=0
1
2ρUe

2 : skin − friction coefficient (18)
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Boundary-layer corrections

Laminar Model: Thwaites’ assumption

After some manipulation on (16) we get:

Ue
ν

· dθ2

dx = 2[(2 + H)m + l(m)] := L(m) (19)

where,

m =
( θ2

Ue

)∂2u
∂y2

∣∣∣
y=0

, l(m) = θ

Ue
· ∂u

∂y

∣∣∣
y=0

Thwaites’ assumption There should be a function relating m and l(m).
He suggested the form L(m) = 0.45 + 6m, which reduces Von-Karman
equation to an ODE with respect θ(x).
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Boundary-layer corrections

Laminar Model: Thwaites’ ODE

Thwaites’ ODE

Ue
d
dx
(θ2

ν

)
= 0.45 − 6

(θ2

ν

)∂Ue
∂x

which is integrated to

θ2(x) =
[Ue(0)

Ue(x)

]6
θ2(0) + 0.45ν

Ue
6(x)

∫ x

0
Ue

5(x ′)dx ′

with,

θ(0) =
( 0.75ν

dUe/dx |x=0

)1/2

Separation of laminar flow cannot be predicted
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Boundary-layer corrections

Michel’s criterion for transition point

Transition should be expected when:

Reθ > Reθmax = 1.174(1 + 22.4
Rex

)Re0.46
x

where,

Reθ = Ueθ

ν
, Rex = Uex

ν
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Boundary-layer corrections

Turbulent model: Head’s equations

Starting from Von-Karman integral momentum equation and
introducing the parameter H1 = (δ − δ∗)/θ, where δ is the thickness
of the boundary layer, we obtain Head’s system of equations:

dθ

dx + (2 + H) θ

Ue
· dUe

dx = 1
2Cf

dH1
dx = −H1

( 1
Ue

· dUe
dx + 1

θ
· dθ

dx
)

+ 0.0306
θ

(H1 − 3)−0.619

Semi-empirical relations are used to close the system

H1 =
{

3.3 + 0.8234(H − 1.1)−1.287, H ≤ 1.6,

3.3 + 1.5501(H − 0.6778)−3.064, H > 1.6.
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Boundary-layer corrections

Turbulent model

For the numerical solution of Head’s equations a 2nd-order
Runge-Kutta scheme is used.

Turbulent separation can be predicted. The separation criterion is
given by: H1 = 3.3
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Boundary-layer corrections

The Drag coefficient

Squire-Young formula for the drag coefficient

Cd =
[
2θTE (Ue)

HTE +5
2

]
UP

+
[
2θTE (Ue)

HTE +5
2

]
LOW

The above formula predicts the drag coefficient by relating the momentum
defect far downstream to the values of the flow field at both sides of the
trailing edge (TE).
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Boundary-layer corrections

IGA-oriented BL corrections

PABLO software
PABLO stands for ”Potential flow around Airfoils with Boundary
Layer coupled One-way”
It is a subsonic airfoil analysis program developed in MATLAB by C.
Wauquiez and A. Rizzi.

IGA enhancements of PABLO
We replace PABLO’s low order panel approximation of the free-stream
velocity Ue outside the boundary layer by its NURBS representation
obtained using the derivative of the IGA-BEM rational B-spline basis.
We replace the numerical approximation of dUe

dx by its exact value
using the NURBS representation of Ue .

Shape-optimization of 2D hydrofoils using one-way coupling of an IGA-BEM solver with the boundary-layer model C.G. Politis121, K.V. Kostas 122, A.I. Ginnis123, P.D. Kaklis1244-5 July 2022 31 / 43



Shape optimization

The shape-optimization environment

The components of the optimization environment
The optimization Algorithm
THE IGA-BEM solver

inviscid fluid
inviscid fluid with BL corrections

The Geometric Parametric Modeler
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Shape optimization

The Geometric Parametric Modeler

The parametric model for a general hydrofoil has been materialized
within Rhinoceros 3D modeling software package with the aid of its
VBscript-based programming language, Rhinoscript.
The model generates a closed cubic B-Spline curve that represents a
hydrofoil, using a set of 11 parameters.
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v = (vi), vi = 0.5, i = 1, . . . , 10, v11 = 0.1
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Shape optimization

The Geometric Parametric Modeler

all parameters, with the exception of chord’s length (L), are defined
using appropriate non-dimensional ratios so that their values always
lie in [0; 1]
This approach eliminates the need of implementing complex
interdependent constraints while guaranteeing the robustness of the
procedure which is of significant importance in an optimization
procedure
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Shape optimization

The Geometric Parametric Modeler

Table: Parameters’ definition

Nr. Name description symbol actual range
0 Length Length of foil’s chord L free
1 Upper-side max

width
Maximum width of suction
side w.r.t. chord

u max [0, 1] →
[

L
500 , L

5

]
2 Upper-side max

width position
Longitudinal position of suc-
tion side’s max width

x u max [0, 1] →
[

L
10 , 7L

10

]
3 Upper-side an-

gle
Suction’s side angle at trail-
ing edge w.r.t. chord

a b u [0, 1] → [0, 90]o

4 Upper-side tip
shape

Leading edge upper part
form factor

tip u [0, 1] → [0.1, 0.9]

5 Upper-side Inflection point position s u [0, 1] →
aft-part shape and/or shape fullness [0.05, 0.95](L − x u max)

6 Lower-side max
width

Maximum width of lower
side w.r.t. chord

l max [0, 1] →
[

L
500 , L

5

]

Shape-optimization of 2D hydrofoils using one-way coupling of an IGA-BEM solver with the boundary-layer model C.G. Politis137, K.V. Kostas 138, A.I. Ginnis139, P.D. Kaklis1404-5 July 2022 35 / 43



Shape optimization

Table: Parameters’ definition

Nr. Name description symbol actual range
7 Lower-side max

width position
Longitudinal position of
lower side’s max width

x l max [0, 1] →
[

L
10 , 7L

10

]
8 Lower-side an-

gle
Suction’s side angle at trail-
ing edge w.r.t. chord

a b l [0, 1] → [−a b l, a b l]o

9 Lower-side tip
shape

Leading edge upper part
form factor

tip l [0, 1] → [0.1, 0.9]

10 Lower-side Inflection point position s l [0, 1] →
aft-part shape and/or shape fullness [0.05, 0.95](L − x l max)

11 Tangent angle
at leading edge

The angle between the ver-
tical axis and foil’s tangent
direction at the leading edge

a [0, 1] → [−20, 20]o
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Shape optimization

The optimization Algorithm

The selected optimization algorithm belongs to the category of
evolutionary ones, as experimentation with gradient and
hessian-based algorithms has indicated the existence of multiple local
minima that makes their usage problematic
Our optimizer uses the multi-objective optimization method
gamultiobj which employs a controlled elitist genetic algorithm (GA)
An elitist GA always favors individuals with better fitness value (rank)
A controlled elitist GA also favors individuals that can help increase
the diversity of the population even if they have a lower fitness value
It is important to maintain the diversity of population for convergence
to an optimal Pareto front
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Shape optimization

An optimization example

Optimization criteria
Inviscid model: maximize lift coefficient CL

BL model: minimize Cd/CL

Minimum deviation from a reference area

Optimization assumptions
The reference area is set to be the one of the NACA-4412 profile
The IGA-BEM solver produces an average lift coefficient calculated
for three angles of attack, namely 1, 3 and 5 degrees
The parameter Length (L) of the hydrofoil parametric model is
assumed to be fixed and is regularized to one
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Shape optimization

Shape-optimization results: Inviscid model
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Figure: Pareto front for the inverse of the average lift coefficient and the
area-deviation criteria.
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Shape optimization

Shape-optimization results: Inviscid model

z_max c_max x_z_max x_c_max a_b a_b_p tip
0.8990 0.8862 0.8520 0.8259 0.8961 0.8915 0.8021

z_max c_max x_z_max x_c_max a_b a_b_p tip
0.8835 0.8826 0.6322 0.8452 0.8842 0.8800 0.6825

z_max c_max x_z_max x_c_max a_b a_b_p tip
0.8371 0.8218 0.5933 0.7868 0.8691 0.8720 0.5409

z_max c_max x_z_max x_c_max a_b a_b_p tip
0.7530 0.7748 0.5404 0.6925 0.8022 0.8706 0.5528

z_max c_max x_z_max x_c_max a_b a_b_p tip
0.8813 0.8880 0.8218 0.8596 0.8978 0.8920 0.7527

z_max c_max x_z_max x_c_max a_b a_b_p tip
0.8885 0.8864 0.8317 0.8190 0.8862 0.8805 0.6480

1 2

3 4

5 6

Figure: Instances of the hydrofoils depicted on the Pareto front. Decreasing lift
coefficient in a left-to-right, top-to-bottom fashion.
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Shape optimization

Shape-optimization results: BL-corrections
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Figure: Pareto front for the drag to lift coefficient ratio and the area-deviation
criteria.
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Shape optimization

Shape-optimization results: BL-corrections

Figure: Instances of the hydrofoils depicted on the Pareto front.
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