Optimal management of stochastic shallow lakes

Michail Loulakis

School of Applied Mathematical and Physical Sciences, NTUA and Institute of Applied and Computational Mathematics, FORTH

joint with G. Kossioris (Crete), A. Koutsimpela (NTUA) & PE Souganidis (Chicago)

MakisFest, 4th July 2022

・ロト ・日下・ ・ヨト・・

oligotrophic vs eutrophic lakes

Κύματα, Πιθανότητες και Αναμνήσεις Optimal management of stochastic shallow lakes

Modelling the nutrient content

The nutrient content is usually measured in terms of P concentration.

$$\begin{split} \dot{P}(t) &= L(t) \qquad (\mathsf{P} \text{ loading by natural and human activity}) \\ &- sP(t) \qquad (\text{sedimentation, outflow}) \\ &+ \Phi\bigl(P(t)\bigr) \qquad (\text{recycling from sediments}) \end{split}$$

Modelling the nutrient content

The nutrient content is usually measured in terms of P concentration.

$$\dot{P}(t) = L(t)$$
 (P loading by natural and human activity)
 $-sP(t)$ (sedimentation, outflow)
 $+\Phi(P(t))$ (recycling from sediments)

Limnologists take Φ to be a sigmoid function, typically

$$\Phi(x) = r \frac{x^2}{m^2 + x^2}.$$

[Carpenter, Ludwig, Brock 1999]

With a change of variables $\left(x = \frac{P}{m}, a = \frac{L}{r}, b = \frac{sm}{r}\right)$ the equation becomes

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{1 + x^2(t)}.$$

Equilibrium under constant load

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{1 + x^2(t)}.$$

When b is not too large the lake may have 2 stable equilibria.

Κύματα, Πιθανότητες και Αναμνήσεις Optimal management of stochastic shallow lakes

A welfare function

Farmers or industry have an interest to increase P loading, a. Visitors prefer a clean lake, i.e. small x.

Suppose a community balances these needs and assigns value to the state of the lake

$$U(a,x) = \ln a - cx^2.$$

Given the current P concentration x, we are interested in the optimal loading $\{a(t):t\geq 0\}$ to maximise the welfare function

$$J(x, a(\cdot)) = \int_0^\infty e^{-\rho t} U(a(t), x(t)) dt$$

where $\{x(t): t \ge 0\}$ solves

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{1 + x^2(t)}, \qquad x(0) = x.$$

The problem

Add multiplicative noise

[Grass, Kiseleva, Wagener 2015]

$$\begin{cases} dx(t) = \left(u(t) - bx(t) + \frac{x^2(t)}{x^2(t) + 1}\right) dt + \sigma x(t) dW(t), \\ x(0) = x \end{cases}$$
(1)

and the value function

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^\infty e^{-\rho t} \left[\ln u(t) - cx^2(t)\right] dt\right]$$

Admissible controls $u \in \mathfrak{U}_x$ should be positive, adapted processes in some filtered probability space such that

$$\mathbb{E}\left[\int_0^\infty e^{-\rho t}\ln u(t)dt\right]<\infty$$

and (1) has a unique strong solution.

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 DPP + regularity of V shows that V satisfies a HJB equation.

4 B K 4 B K

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 DPP + regularity of V shows that V satisfies a HJB equation. Issues

• Measurable selection problems in the proof of DPP

4 B K 4 B K

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 DPP + regularity of V shows that V satisfies a HJB equation. Issues

- Measurable selection problems in the proof of DPP
- No a priori regularity for V. In fact we do not even know if V takes finite values.

化原因 化原因

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 DPP + regularity of V shows that V satisfies a HJB equation. Issues

- Measurable selection problems in the proof of DPP
- No a priori regularity for V. In fact we do not even know if V takes finite values.
- Unbounded controls, the Hamiltonian may be infinite.

.

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 DPP + regularity of V shows that V satisfies a HJB equation. Issues

- Measurable selection problems in the proof of DPP
- No a priori regularity for V. In fact we do not even know if V takes finite values.
- Unbounded controls, the Hamiltonian may be infinite.
- Boundary conditions at zero? at infinity?

A 3 3 4 4

V as a constrained HJB v.s.

• • = • • = •

The value function V is a continuous constrained viscosity solution on $[0,\infty)$ to the HJB equation

$$\rho V = \underbrace{\left[\left(\frac{x^2}{x^2 + 1} - bx \right) V' - \left(\ln(-V') + cx^2 + 1 \right) + \frac{1}{2} \sigma^2 x^2 V'' \right]}_{H(x,V',V'')}.$$

i) For every $\phi \in C^2[0,\infty)$ such that $V - \phi$ has a local maximum at $x \ge 0$:

 $\rho V(x) \le H(x, \phi'(x), \phi''(x))$

V as a constrained HJB v.s.

伺い イヨト イヨト

The value function V is a continuous constrained viscosity solution on $[0,\infty)$ to the HJB equation

$$\rho V = \underbrace{\left[\left(\frac{x^2}{x^2 + 1} - bx \right) V' - \left(\ln(-V') + cx^2 + 1 \right) + \frac{1}{2} \sigma^2 x^2 V'' \right]}_{H(x,V',V'')}.$$

i) For every $\phi \in C^2[0,\infty)$ such that $V - \phi$ has a local maximum at $x \ge 0$: $\rho V(x) \le H(x, \phi'(x), \phi''(x))$

ii) For any $\phi \in C^2(0,\infty)$ such that $V - \phi$ has a local minimum at x > 0:

$$\rho V(x) \ge H(x, \phi'(x), \phi''(x))$$

V as a constrained HJB v.s.

A I A A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The value function V is the unique continuous constrained viscosity solution on $[0,\infty)$ to

$$\rho V - \underbrace{\left[\left(\frac{x^2}{x^2 + 1} - bx \right) V' - \left(\ln(-V') + cx^2 + 1 \right) + \frac{1}{2} \sigma^2 x^2 V'' \right]}_{H(x,V',V'')} = 0.$$

satisfying:

V as a constrained HJB v.s.

• • = • • =

The value function V is the unique continuous constrained viscosity solution on $[0,\infty)$ to

$$\rho V - \underbrace{\left[\left(\frac{x^2}{x^2 + 1} - bx \right) V' - \left(\ln(-V') + cx^2 + 1 \right) + \frac{1}{2} \sigma^2 x^2 V'' \right]}_{H(x,V',V'')} = 0.$$

satisfying:

$$DV(x) \le -\frac{1}{c_*} < 0, \quad \forall x \in [0,\infty).$$

and

$$\liminf_{x \to \infty} \frac{V(x)}{1 + x^2} > -\infty.$$

Opt. controlled lake

Properties of the value function $(\sigma^2 < 2b + \rho)$

• V decreases and $0 \le x < y \Longrightarrow \frac{V(y) - V(x)}{y - x} \le -c < 0$,

Properties of the value function $(\sigma^2 < 2b + \rho)$

- V decreases and $0 \le x < y \Longrightarrow \frac{V(y) V(x)}{y x} \le -c < 0$,
- For $\sigma > 0$, V is smooth and satisfies the HBJ classically. For $\sigma = 0$, V' may have a jump discontinuity at one $x_* > 0$

Properties of the value function $(\sigma^2 < 2b + \rho)$

- V decreases and $0 \le x < y \Longrightarrow \frac{V(y) V(x)}{y x} \le -c < 0$,
- For $\sigma > 0$, V is smooth and satisfies the HBJ classically. For $\sigma = 0$, V' may have a jump discontinuity at one $x_* > 0$
- V is differentiable at 0 and $\ln (-V'(0)) + \rho V(0) + 1 = 0$.

Properties of the value function $(\sigma^2 < 2b + \rho)$

• V decreases and $0 \le x < y \Longrightarrow \frac{V(y) - V(x)}{y - x} \le -c < 0$, • For $\sigma > 0$, V is smooth and satisfies the HBJ classically. For $\sigma = 0$, V' may have a jump discontinuity at one $x_* > 0$ • V is differentiable at 0 and $\ln(-V'(0)) + \rho V(0) + 1 = 0$.

$$V(x) + A\left(x + \frac{1}{b+\rho}\right)^2 + \frac{1}{\rho}\ln\left(x + \frac{1}{b+\rho}\right) \stackrel{x \to \infty}{\longrightarrow} K$$

Κύματα, Πιθανότητες και Αναμνήσεις

Opt. controlled lake

Optimally controlled process

Bartaloni '20,'21; Koutsimpela, L 2022+

A verification theorem gives the optimal control in feedback form

$$u_*(x(t)) = -\frac{1}{V'_{\sigma}(x(t))} \le \frac{1}{c_*}$$

so the optimally controlled system satisfies

$$dx(t) = \left(-\frac{1}{V'_{\sigma}(x(t))} - bx(t) + \frac{x^2(t)}{x^2(t) + 1}\right)dt + \sigma x(t)dW(t).$$

Κύματα, Πιθανότητες και Αναμνήσεις

Invariant measure

$$\mathcal{L}^*\mu = 0 \Longrightarrow d\mu(x) = \frac{1}{Z} \ x^{-2\left(1 + \frac{b}{\sigma^2}\right)} e^{-\Psi_\sigma(x)} \, dx.$$

The exponent Ψ_σ is explicitly given in terms of V_σ' and

$$\Psi_{\sigma}(x)\simeq \frac{2}{\sigma^2 |V_{\sigma}'(0)|x}, \ x\to 0 \qquad \text{and} \qquad \Psi_{\sigma}(x)\simeq \frac{2}{\sigma^2 x}, \ x\to \infty.$$

Polynomial tails at infinity get fatter as σ increases.

Κύματα, Πιθανότητες και Αναμνήσεις

Oligotrophic vs Eutrophic

When σ is small and other parameters are suitable, the invariant distribution may be bimodal. The process $y(t) = \ln (x(t))$ is a diffusion in a double-well potential $\Phi_{\sigma}(y)$:

$$dy(t) = -\Phi_\sigma'\bigl(y(t)\bigr)dt + \sigma\,dW(t).$$

with invariant distribution for $\sigma>0$

$$d\mu_{\sigma}(x) = \frac{1}{Z_{\sigma}} \exp\left(-\frac{2}{\sigma^2}\Phi_{\sigma}(x)\right) dx.$$

Deterministic vs Stochastic trajectories

When σ is small and other parameters are suitable, the invariant distribution may be bimodal. The process $y(t) = \ln (x(t))$ is a diffusion in a double-well potential $\Phi_{\sigma}(y)$:

$$dy(t) = -\Phi'_{\sigma}(y(t))dt + \sigma \, dW(t).$$

Opt. controlled lake

$\sigma \rightarrow 0$ asymptotics: metastability

$$V_{\sigma}$$
 semi-convex $\Rightarrow V'_{\sigma} \rightarrow V'_{0}$, as $\sigma \rightarrow 0$, $\forall x \neq x_{*}$

 $\Rightarrow \Phi_{\sigma} \to \Phi_0, \text{ uniformly on compact subsets of } (0, +\infty)$ reduced to Freidlin-Wentzel theory.

Arrhenius law :
$$\frac{\sigma^2}{2} \log \mathbb{E}[\tau_{O \to E}] \to A, \quad \frac{\sigma^2}{2} \log \mathbb{E}[\tau_{E \to O}] \to B$$

[Siguira 1993, Bovier & den Hollander book 2014]

[Day 1983]

Κύματα, Πιθανότητες και Αναμνήσεις

Ευχαριστούμε Μάκη. Πάντα να εμπνέεις τους νεότερους!