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Limnology Economics Noisy Lake

oligotrophic vs eutrophic lakes

Κύματα, Πιθανότητες και Αναμνήσεις Optimal management of stochastic shallow lakes



Limnology Economics Noisy Lake

Modelling the nutrient content

The nutrient content is usually measured in terms of P
concentration.

Ṗ (t) = L(t) (P loading by natural and human activity)

− sP (t) (sedimentation, outflow)

+ Φ
(
P (t)

)
(recycling from sediments)

Limnologists take Φ to be a sigmoid function, typically

Φ(x) = r
x2

m2 + x2
.

[Carpenter, Ludwig, Brock 1999]

With a change of variables (x = P
m , a = L

r , b = sm
r ) the equation

becomes

ẋ(t) = a(t)− bx(t) +
x2(t)

1 + x2(t)
.
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Equilibrium under constant load

ẋ(t) = a(t)− bx(t) +
x2(t)

1 + x2(t)
.

When b is not too large the lake may have 2 stable equilibria.
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Solid black line: y = bx− x2

1+x2 . Dashed red line: y = a.
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A welfare function

Farmers or industry have an interest to increase P loading, a.

Visitors prefer a clean lake, i.e. small x.

Suppose a community balances these needs and assigns value to
the state of the lake

U(a, x) = ln a− cx2.

Given the current P concentration x, we are interested in the
optimal loading {a(t) : t ≥ 0} to maximise the welfare function

J(x, a(·)) =

∫ ∞
0

e−ρt U(a(t), x(t))dt

where {x(t) : t ≥ 0} solves

ẋ(t) = a(t)− bx(t) +
x2(t)

1 + x2(t)
, x(0) = x.
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The problem

Add multiplicative noise [Grass, Kiseleva, Wagener 2015]dx(t) =

(
u(t)− bx(t) +

x2(t)

x2(t) + 1

)
dt+ σx(t)dW (t),

x(0) = x

(1)

and the value function

V (x) = sup
u∈Ux

E
[∫ ∞

0
e−ρt

[
lnu(t)− cx2(t)

]
dt

]
.

Admissible controls u ∈ Ux should be positive, adapted processes
in some filtered probability space such that

E
[∫ ∞

0
e−ρt lnu(t)dt

]
<∞

and (1) has a unique strong solution.
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DPP and HJB equation

The tool to characterise the value function V is the Dynamic
Programming Principle (DPP):

V (x) = sup
u∈Ux

E
[∫ θu

0
e−ρt

(
lnu(t)− cx2(t)

)
dt+ e−ρθuV (x(θu))

]
.

DPP + regularity of V shows that V satisfies a HJB equation.

Issues

Measurable selection problems in the proof of DPP

No a priori regularity for V . In fact we do not even know if V
takes finite values.

Unbounded controls, the Hamiltonian may be infinite.

Boundary conditions at zero? at infinity?
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V as a constrained HJB v.s. [Kossioris, L, Souganidis 2016]

The value function V is a continuous constrained viscosity solution
on [0,∞) to the HJB equation

ρV =

[(
x2

x2 + 1
− bx

)
V ′ −

(
ln(−V ′) + cx2 + 1

)
+

1

2
σ2x2V ′′

]
︸ ︷︷ ︸

H(x,V ′,V ′′)

.

i) For every φ ∈ C2[0,∞) such that V − φ has a local maximum
at x ≥ 0:

ρV (x) ≤ H
(
x, φ′(x), φ′′(x)

)

ii) For any φ ∈ C2(0,∞) such that V − φ has a local minimum
at x > 0:

ρV (x) ≥ H
(
x, φ′(x), φ′′(x)

)
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V as a constrained HJB v.s. [Kossioris, L, Souganidis 2016; Koutsimpela, L 2022+]

The value function V is the unique continuous constrained
viscosity solution on [0,∞) to

ρV−
[(

x2

x2 + 1
− bx

)
V ′ −

(
ln(−V ′) + cx2 + 1

)
+

1

2
σ2x2V ′′

]
︸ ︷︷ ︸

H(x,V ′,V ′′)

= 0.

satisfying:

DV (x) ≤ − 1

c∗
< 0, ∀x ∈ [0,∞).

and

lim inf
x→∞

V (x)

1 + x2
> −∞.
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Properties of the value function (σ2 < 2b+ ρ)

V decreases and 0 ≤ x < y =⇒ V (y)−V (x)
y−x ≤ −c < 0,

For σ > 0, V is smooth and satisfies the HBJ classically.
For σ = 0, V ′ may have a jump discontinuity at one x∗ > 0
V is differentiable at 0 and ln

(
− V ′(0)

)
+ ρV (0) + 1 = 0.

V (x) +A

(
x+

1

b+ ρ

)2

+
1

ρ
ln

(
x+

1

b+ ρ

)
x→∞−→ K
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Optimally controlled process Bartaloni ’20,’21; Koutsimpela, L 2022+

A verification theorem gives the optimal control in feedback form

u∗
(
x(t)

)
= − 1

V ′σ
(
x(t)

) ≤ 1

c∗

so the optimally controlled system satisfies

dx(t) =

(
− 1

V ′σ
(
x(t)

) − bx(t) +
x2(t)

x2(t) + 1

)
dt+ σx(t)dW (t).
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Invariant measure

L∗µ = 0 =⇒ dµ(x) =
1

Z
x−2
(

1+ b
σ2

)
e−Ψσ(x) dx.

The exponent Ψσ is explicitly given in terms of V ′σ and

Ψσ(x) ' 2

σ2|V ′σ(0)|x
, x→ 0 and Ψσ(x) ' 2

σ2x
, x→∞.

Polynomial tails at infinity get fatter as σ increases.
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Oligotrophic vs Eutrophic

When σ is small and other parameters are suitable, the invariant
distribution may be bimodal. The process y(t) = ln

(
x(t)

)
is a

diffusion in a double-well potential Φσ(y):

dy(t) = −Φ′σ
(
y(t)

)
dt+ σ dW (t).

with invariant distribution for σ > 0

dµσ(x) =
1

Zσ
exp

(
− 2

σ2
Φσ(x)

)
dx.
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Deterministic vs Stochastic trajectories
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distribution may be bimodal. The process y(t) = ln
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x(t)

)
is a

diffusion in a double-well potential Φσ(y):

dy(t) = −Φ′σ
(
y(t)
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σ → 0 asymptotics: metastability Koutsimpela, L. 2022+

Vσ semi-convex ⇒ V ′σ → V ′0 , as σ → 0, ∀x 6= x∗

⇒ Φσ → Φ0, uniformly on compact subsets of (0,+∞)

reduced to Freidlin-Wentzel theory.

Arrhenius law :
σ2

2
logE

[
τO→E

]
→ A,

σ2

2
logE

[
τE→O

]
→ B

[Siguira 1993, Bovier & den Hollander book 2014]

τO→E

E
[
τO→E

] d−→ Exp(1) [Day 1983]
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Ευχαριστούμε Μάκη.

Πάντα να εμπνέεις τους νεότερους!
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